PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Necessary and sufficient conditions for stability of fractional discrete-time linear state-space systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper the problems of practical stability and asymptotic stability of fractional discrete-time linear systems are addressed. Necessary and sufficient conditions for practical stability and for asymptotic stability are established. The conditions are given in terms of eigenvalues of the state matrix of the system. In particular, it is shown that (similarly as in the case of fractional continuous-time linear systems) in the complex plane exists such a region, that location of all eigenvalues of the state matrix in this region is necessary and sufficient for asymptotic stability. The parametric description of boundary of this region is given. Moreover, it is shown that Schur stability of the state matrix (all eigenvalues have absolute values less than 1) is not necessary nor sufficient for asymptotic stability of the fractional discrete-time system. The considerations are illustrated by numerical examples.
Rocznik
Strony
779--786
Opis fizyczny
Bibliogr. 32 poz., rys.
Twórcy
  • Faculty of Electrical Engineering, Białystok University of Technology, 45D Wiejska St., 15-351 Białystok, Poland
autor
  • Faculty of Electrical Engineering, Białystok University of Technology, 45D Wiejska St., 15-351 Białystok, Poland
Bibliografia
  • [1] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
  • [2] C.A. Monje, Y.Q. Chen, B.M. Vinagre, D. Xue, and V. Feliu- Batlle, Fractional-order Systems and Controls Fundamentals and Applications, Springer, London, 2010.
  • [3] M.M. Meerschaert and C. Tadjeran, “Finite difference approximations for fractional advection-dispersion flow equations”, J. Computational and Applied Mathematics 172 (1), 65-77 (2004).
  • [4] A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
  • [5] L. Debnath, “Recent applications of fractional calculus to science and engineering”, Int. J. Mathematics and Mathematical Sciences 54, 3413-3442 (2003).
  • [6] A. Dzieliński, D. Sierociuk, and G. Sarwas, “Some applications of fractional order calculus”, Bull. Pol. Ac.: Tech. 58 (4), 583-592 (2010).
  • [7] P. Lino and G. Maione, “Loop-shaping and easy tuning of fractional-order proportional integral controllers for position servo systems”, Asian J. Control 15 (3), 796-805 (2012).
  • [8] Y. Luo and Y-Q. Chen, Fractional Order Motion Controls, John Wiley & Sons Ltd, Chichester, 2013.
  • [9] Y-H. Chang, C-I. Wu, H-W. Lin, H-C. Chen, and C-W. Chang, “Fractional order integral sliding-mode flux observer for direct field-oriented induction machines”, Int. J. Innovative Computing, Information and Control 8 (7A), 4851-4198, (2012).
  • [10] R. Melicio, V.M.F. Mendes, and J.P.S. Catalao, “Power converter topologies and fractional-order controllers: Wind energy applications”, Proc. Int. Conf. on Power Electronics, Electrical Drives and Motion 1, 1334-1338 (2010).
  • [11] D. Matignon, “Stability result on fractional differential equations with applications to control processing”, Proc. IMACSSMC 2, 963-968 (1996).
  • [12] I. Petras, “Stability of fractional-order systems with rational orders: a survey”, Fractional Calculus & Applied Analysis. Int. J. Theory and Applications 12 (3), 269-298 (2009).
  • [13] M.S. Tavazoei and M. Haeri, “Note on the stability of fractional order systems”, Mathematics and Computers in Simulation 79 (5), 1566-1576 (2009).
  • [14] M. Busłowicz, “Stability of linear continuous-time fractional order systems with delays of the retarded type”, Bull. Pol. Ac.: Tech. 56 (4), 319-324 (2008).
  • [15] M. Busłowicz, “Stability analysis of linear continuous-time fractional systems of commensurate order”, J. Automation, Mobile Robotics and Intelligent Systems 3 (1), 16-21 (2009).
  • [16] M. Busłowicz, “Stability of state-space models of linear continuous-time fractional order systems”, Acta Mechanica et Automatica 5 (2), 15-22 (2011).
  • [17] M. Busłowicz, “Stability analysis of continuous-time linear systems consisting of n subsystems with different fractional orders”, Bull. Pol. Ac.: Tech. 60 (2), 279-284 (2012).
  • [18] J. Sabatier, M. Moze, and C. Farges, “LMI stability conditions for fractional order systems”, Computers and Mathematics with Applications 59 (5), 1594-1609 (2010).
  • [19] A. Dzieliński and D. Sierociuk, “Stability of discrete fractional order state-space systems”, J. Vibration and Control 14, 1543-1556 (2008).
  • [20] S. Guermah, S. Djennoune, and M. Bettayeb, “A new approach for stability analysis of linear discrete-time fractional-order systems”, in New Trends in Nanotechnology and Fractional Calculus Applications, ed. D Baleanu, pp. 151-162, Springer, Berlin, 2010.
  • [21] R. Stanisławski, W.P. Hunek, and K.J. Latawiec, “Finite approximations of a discrete-time fractional derivative”, Proc. 16th Int. Conf. Methods and Models in Automation and Robotics 1, 142-145 (2011).
  • [22] M. Busłowicz, “Practical stability of scalar discrete-time linear systems of fractional order”, in Automation of Discrete Processes: Theory and Applications, eds. A. Świerniak and J.Krystek, vol. 1, pp. 31-40, Printing House of Silesian University of Technology, Gliwice, 2012, (in Polish).
  • [23] M. Busłowicz, “Simple analytic conditions for stability of fractional discrete-time linear systems with diagonal state matrix”, Bull. Pol. Ac.: Tech. 60 (4), 809-814 (2012).
  • [24] P. Ostalczyk, “Equivalent descriptions of a discrete-time fractional-order linear system and its stability domains”, Int.J. Applied Mathematics and Computer Science 22 (3), 533-538 (2012).
  • [25] M. Busłowicz and T. Kaczorek, “Simple conditions for practical stability of linear positive fractional discrete-time linear systems”, Int. J. Applied Mathematics and Computer Science 19 (2), 263-269 (2009).
  • [26] T. Kaczorek, “Practical stability of positive fractional discretetime systems”, Bull. Pol. Ac.: Tech. 56 (4), 313-317 (2008).
  • [27] T. Kaczorek, Selected Problems of Fractional Systems Theory, Springer, Berlin, 2011.
  • [28] T. Kaczorek, “Practical stability and asymptotic stability of positive fractional 2D linear systems”, Asian J. Control 12 (2), 200-207 (2010).
  • [29] E.N. Gryazina, B.T. Polyak, and A.A. Tremba, “Ddecomposition technique state-of-the-art”, Automation and Remote Control 69 (12), 1991-2026 (2008).
  • [30] J. Ackermann, Sampled-data Control Systems, Springer, Berlin, 1985.
  • [31] R. Hilfer, Application of Fractional Calculus in Physics, World Scientific, Singapore 2000.
  • [32] R. Stanisławski and K. J. Latawiec, “Stability analysis for discrete-time fractional-order LTI state-space systems. Part I: New necessary and sufficient conditions for asymptotic stability”, Bull. Pol. Ac.: Tech., 61 (2), 353-361 (2013). 786
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4a781da3-5624-4f4f-9676-35d13f656a6b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.