Identyfikatory
Warianty tytułu
Model niezawodności różnych konfiguracji zestawu elektrowni wiatrowej oparty na sekwencyjnej symulacji Monte Carlo
Języki publikacji
Abstrakty
Paper presents an enhanced model for calculation of reliability indices for different wind power plants configuration concepts used over past two decades. The autoregressive – moving average (ARMA) model is used combined with the sequential Monte Carlo simulation in order to predict expected energy not served (EENS) more accurately during the failure. Statistical database of LWK (Land Wirtschafts Kammer) is used for determining different wind power plant configuration types component reliability (performance) used for calculating influence of individual wind power plant configuration concepts on expected energy not served. Furthermore, a comparison of the distribution of EENS of different wind power plants configuration concepts have been presented, as well as the influence of the predominantly mechanical and electrical components failures on both EENS and failure rates.
W pracy przedstawiono udoskonalony model służący do obliczania wskaźników niezawodności dla różnych koncepcji konfiguracji zestawów elektrowni wiatrowych jakie stosowano w ostatnich dwóch dziesięcioleciach. Wykorzystano autoregresyjny model średniej ruchomej (ARMA), który w połączeniu z symulacją sekwencyjną Monte Carlo pozwala z większą dokładnością przewidzieć oczekiwaną wartość energii niedostarczonej (EENS) podczas awarii. Baza statystyczna LWK (Land Wirtschafts Kammer) posłużyła autorom do określania niezawodności (wydajności) części składowych elektrowni wiatrowych przy różnych typach konfiguracji zestawu. Otrzymane wartości wykorzystano do obliczenia wpływu poszczególnych koncepcji konfiguracji zestawu elektrowni wiatrowej na oczekiwaną wartość energii niedostarczonej. Ponadto, przedstawiono porównanie rozkładu EENS dla różnych koncepcji konfiguracji zestawu elektrowni wiatrowej jak również omówiono wpływ uszkodzeń części mechanicznych i elektrycznych elektrowni na EENS oraz awaryjność.
Czasopismo
Rocznik
Tom
Strony
237--244
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
- Faculty of Electrical Engineering Josip Juraj Strossmayer University of Osijek Ulica kneza Trpimira 2b, 31000 Osijek, Croatia
autor
- Faculty of Electrical Engineering Josip Juraj Strossmayer University of Osijek Ulica kneza Trpimira 2b, 31000 Osijek, Croatia
autor
- Mechanical Engineering Faculty Josip Juraj Strossmayer University of Osijek Trg Ivane Brlić Mažuranić 2, 35000 Slavonski Brod, Croatia
Bibliografia
- 1. Abul'Wafa A R. Reliability/cost evaluation of a wind power delivery system. Electric Power Systems Research 2011; 81: 873-879, http://dx.doi.org/10.1016/j.epsr.2010.11.028.
- 2. Ackermann, T. Wind Power in Power Systems. Wiley, 2005, http://dx.doi.org/10.1002/0470012684.
- 3. Arabian-Hoseynabadi H, Oraee H, Tavner P J. Wind turbine productivity considering electrical subassembly reliability. Renewable Energy 2010; 35: 190-197, http://dx.doi.org/10.1016/j.renene.2009.04.014.
- 4. Attwa Y M, El-Saadany E F. Wind Based Distributed Generation; Uncertainties and planning Obstacles. Proceedings of IEEE Power Engineering Society General Meeting, Tampa, USA, June 2007: 1–5, http://dx.doi.org/10.1109/pes.2007.385800.
- 5. Billinton R, Bagen. A Sequential Simulation Method for the Generating Capacity Adequacy Evaluation of Small Stand - Alone WECS. IEEE Proceedings of Canadian Conference on Electrical and Computer Engineering 2002; 1: 72-77.
- 6. Billinton R, Chen H, Ghajar R. Time-series models for reliability evaluation of power systems including wind energy. Microelectronics Reliability 1996; 36: 1253-1261, http://dx.doi.org/10.1016/0026-2714(95)00154-9.
- 7. Billinton R, Gao Y. Multistate Wind Energy Conversion System Models for Adequacy Assessment of Generating Systems Incorporating Wind Energy. IEEE Transactions on Energy Conversion 2008; 23: 163-170, http://dx.doi.org/10.1109/TEC.2006.882415.
- 8. Billinton R, Hua C, Ghajar R. A sequential Simulation Technique for Adequacy Evaluation of Generating Systems Including Wind Energy. IEEE Transactions on Energy Conversion 1996; 11: 728-734, http://dx.doi.org/10.1109/60.556371.
- 9. Castro Sayas F, Allan N R. Generation availability assessment of wind farms. IET Generation, Transmission and Distribution, 1996; 143; 507-518, http://dx.doi.org/10.1049/ip-gtd:19960488.
- 10. D'Annunzio C, Santoso S. Wind power generation reliability analysis and modelling. Proceedings of IEEE Engineering Society General Meeting, San Francisco, USA, 2005; 35-39.
- 11. Deshmukh R G, Ramakumar R. Reliability Analysis of combined wind-electric and conventional generation systems. Solar Energy 1982; 28; 345-352, http://dx.doi.org/10.1016/0038-092X(82)90309-7.
- 12. Ehsani A, Fotuhi M, Abbaspour A, Ranjbar A M. An Analytical Method for the Reliability Evaluation of Wind Energy Systems. Proceedings of IEEE Region 10 TENCON, Melbourne, Australia, November 2005; 1-7, http://dx.doi.org/10.1109/tencon.2005.300832.
- 13. Faulstich S, Lyding P, Tavner P J. Effects of Wind Speed on Wind turbine Availability. Proceedings of EWEA 2011, Brussels, Belgium, March 2011.
- 14. Giorsetto P, Utsurogi K F. Development of a new procedure for reliability modeling of wind turbine generators. IEEE Transactions on Power Apparatus and Systems 1983: 134-143, http://dx.doi.org/10.1109/TPAS.1983.318006.
- 15. Haghifam M R, Omidvar M. Wind Farm Modeling in Reliability Assessment of Power System. Proceedings of International Conference on Probabilistic Methods Applied to Power Systems, Stockholm, Sweden, June 2006: 1-5, http://dx.doi.org/10.1109/pmaps.2006.360414.
- 16. Hahn B, Durstewitz M, Rohrig K. Reliability of wind turbines - Experiences of 15 years with 1500 WTs. (Institut für Solare Energieversorgungstechnik (ISET), Verein an der Universität Kassel, Kassel), Germany, 2006
- 17. International Energy Agency. www.iea.org, accessed November 2012
- 18. Jaeseok C, Jeongje P, Kyeonghee C, Taegon O, Shahidehpour M. Probabilistic Reliability Evaluation of Composite Power Systems Including Wind Turbine Generators. Proceedings of International Conference on Probabilistic Methods Applied to Power Systems, Singapore, Singapore, June 2010: 802-807.
- 19. Kaigui X, Billinton R. Energy and reliability benefits of wind energy conversion systems. Renewable Energy 2011; 36: 1983–1988, http://dx.doi.org/10.1016/j.renene.2010.12.011.
- 20. Karaki S H, Chedid R B, Ramadan R. Probabilistic Performance Assessment of Wind Energy Conversion Systems. IEEE Transactions on Energy Conversion 1999; 14: 217-224, http://dx.doi.org/10.1109/60.766986.
- 21. Karki R, Billinton R. Cost-Effective Wind Energy Utilization of Reliable Power Supply. IEEE Transactions on Energy Conversion 2004; 19: 435-440, http://dx.doi.org/10.1109/TEC.2003.822293.
- 22. Karki R, Hu P, Billinton R. Reliability Evaluation of a Wind Power Delivery System Using an Approximate Wind Model. Proceedings of the 41st International Universities Power Engineering Conference, Newcastle, UK, September 2006: 113-117, http://dx.doi.org/10.1109/UPEC.2006.367726.
- 23. Karki R, Hu P. Wind Power Simulation Model for Reliability Evaluation. Proceedings of Canadian Conference on Electrical and Computer Engineering, Saskatoon, Canada, May 2005: 541-544, http://dx.doi.org/10.1109/ccece.2005.1556988.
- 24. Leite A P, Borges C L T, Falcao D M. Probabilistic Wind Farms Generation Model for Reliability Studies Applied to Brazilian Sites. IEEE Transactions on Power Systems 2006; 21: 1493-1501, http://dx.doi.org/10.1109/TPWRS.2006.881160.
- 25. Liang W, Jeongje P, Jaeseok C, El-Keib A A, Shahidehpour M, Billinton R. Probabilistic Reliability Evaluation of Power Systems Including Wind turbine Generators Using a Simplified Multi State Model: A case Study. Proceedings of IEEE Power & Energy Society General Meeting, Calgary, Canada, July 2009: 1-6.
- 26. Manco T, Testa A. A Markovian Approach to Model Power Avaliability of a Wind Turbine. Proceedings of IEEE Power Tech, Lausanne, Switzerland, July 2007: 1256-1261.
- 27. Peng W., Billinton R. Reliability Benefit Analysis of Adding WTG to a Distribution System. IEEE Transactions on Energy Conversion 2001; 16: 134-139, http://dx.doi.org/10.1109/60.921464.
- 28. Renewables 2013 – Global Status Report. http://www.ren21.net, accessed January 2014
- 29. Ribrant J, Bertling L. Survey of Failures in Wind Power Systems With Focus on Swedish Wind Power Plants During 1997 – 2005. IEEE Transactions on Energy Conversion 2007; 22: 167-173, http://dx.doi.org/10.1109/TEC.2006.889614.
- 30. Ribrant, J. Reliability performance and maintenance - A survey of failures in wind power systems, Stockholm: Master thesis, KTH School of Electrical Engineering, 2006.
- 31. Spinato F, Tavner P J, Van Bussel G J W, Koutoulakos E. Reliability of wind turbine subassemblies. IET Renewable Power Generation 2008; 3: 387-401, http://dx.doi.org/10.1049/iet-rpg.2008.0060.
- 32. Tavner P J, Greenwood D M, Whittle M W G, Gindele R, Faulstich S, Hahn B. Study of weather and location effects on wind turbine failure rates. Wind Energy 2012; 16: 175-187, http://dx.doi.org/10.1002/we.538.
- 33. Tavner P J, Xiang J, Spinato F. Reliability Analysis for Wind Turbines. Wind Energy 2007; 10: 1-18, http://dx.doi.org/10.1002/we.204.
- 34. Wang X, Dai Hui Z, Thomas R J. Reliability Modeling of Large Wind Farms and Associated Electric Utility Interface Systems. IEEE Transactions on Power Apparatus and Systems 1984: 569-575, http://dx.doi.org/10.1109/TPAS.1984.318746.
- 35. Windstats. www.windstats.com, accessed November 2010.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4a738f47-c813-4710-81d8-ed761f9a5793