PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Spatio-temporal analysis of rainfall trends in Chhattisgarh State, Central India over the last 115 years

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Przestrzenna i czasowa analiza tendencji zmian opadów w stanie Chhattisgarh w środkowych Indiach w ciągu ostatnich 115 lat
Języki publikacji
EN
Abstrakty
EN
A quantitative and qualitative understanding of the anticipated climate-change-driven multi-scale spatio- -temporal shifts in precipitation and attendant river flows is crucial to the development of water resources management approaches capable of sustaining and even improving the ecological and socioeconomic viability of rainfed agricultural regions. A set of homogeneity tests for change point detection, non-parametric trend tests, and the Sen’s slope estimator were applied to long-term gridded rainfall records of 27 newly formed districts in Chhattisgarh State, India. Illustrating the impacts of climate change, an analysis of spatial variability, multitemporal (monthly, seasonal, annual) trends and inter-annual variations in rainfall over the last 115 years (1901– 2015 mean 1360 mm·y–1) showed an overall decline in rainfall, with 1961 being a change point year (i.e., shift from rising to declining trend) for most districts in Chhattisgarh. Spatio-temporal variations in rainfall within the state of Chhattisgarh showed a coefficient of variation of 19.77%. Strong inter-annual and seasonal variability in regional rainfall were noted. These rainfall trend analyses may help predict future climate scenarios and thereby allow planning of effective and sustainable water resources management for the region.
PL
Ilościowe i jakościowe rozpoznanie przewidywanych wielowymiarowych zmian opadów i towarzyszących im przepływów w rzekach spowodowanych zmianami klimatu jest decydujące dla rozwoju metod zarządzania zasobami wodnymi zdolnych utrzymać lub nawet usprawnić rentowność obszarów rolniczych zasilanych opadami. Zastosowano kilka testów jednorodności do wykrycia punktu zwrotnego, nieparametryczne testy trendu i estymator nachylenia Sena do analizy wieloletnich danych o opadach w 27 nowo utworzonych dystryktach stanu Chhattisgarh w Indiach. Ilustrując wpływ zmian klimatu, wyniki analizy przestrzennej zmienności, miesięcznych, sezonowych i rocznych trendów oraz zmienności między latami (1901–2015, średni opad 1360 mm·r–1) wykazały ogólne zmniejszenie ilości opadów w większości dystryktów stanu Chhattisgarh. Rok 1961 był punktem zwrotnym między rosnącym a malejącym trendem opadów. Współczynnik zmienności przestrzennej i czasowej opadów w stanie Chhattisgarh wynosił 19,77%. Zanotowano znaczną zmienność opadów między poszczególnymi latami i porami roku. Takie analizy trendów mogą być przydatne w przewidywaniu przyszłych scenariuszy klimatycznych, a w związku z tym – umożliwić wydajne i zrównoważone zarządzanie zasobami wodnymi regionu.
Wydawca
Rocznik
Tom
Strony
117--128
Opis fizyczny
Bibliogr. 56 poz., rys., tab.
Twórcy
autor
  • National Institute of Hydrology, Water Resources Systems Division, Roorkee, India
autor
  • Indian Institute of Technology, Department of WRDM, Roorkee, India
autor
  • McGill University, Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, 21 111 Lakeshore Road, Ste Anne de Bellevue, QC H9X 3V9, Canada
  • National Institute of Hydrology, Water Resources Systems Division, Roorkee, India
Bibliografia
  • ALEXANDER L.V., ZHANG X., PETERSON T. C., CAESAR J., GLEASON B., KLEIN TANK A.M.G., TAGIPOUR A. 2006. Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research: Atmospheres. Vol. 111. Iss. D5. DOI 10.1029/2005JD006290.
  • ALEXANDERSSON H. 1986. A homogeneity test applied to precipitation data. Journal of Climatology. Vol. 6 p. 661–675.
  • ALEXANDERSSON H., MOBERG A. 1997. Homogenization of Swedish temperature data. Part I: A homogeneity test for linear trends. International Journal of Climatology. Vol. 17 p. 25–34.
  • BHELAWE S., CHAUDHARY J.L., NAIN A.S., SINGH R., KHAVSE R., CHANDRAWANSHI S.K. 2014. Rainfall variability in Chhttisgarh State using GIS. 9(2) p. 519–524. DOI org/10.12944/CWE.9.2.36.
  • BELLE G., HUGHES J.P. 1984. Nonparametric tests for trend in water quality. Water Resources Research. Vol. 20(1) p. 127–136.
  • Bijapur District Administration 2017. Agriculture [online]. [Access 21.06.2017]. Available at: www.bijapur.gov.in/en/agriculture
  • CHAMBERS L.E. 2003. South Australian rainfall variability and trends. Bureau of Meteorology Research Centre pp. 33.
  • CHOWDHURY M.S.M., HOSSAIN I. 2011. Effects of temperature, rainfall and relative humidity on leaf spot of jackfruit seedling and its eco-friendly management. The Agriculturists. Vol. 9. Iss. 1–2 p. 126–136.
  • CHOWDHURY R.K., BEECHAM S. 2010. Australian rainfall trends and their relation to the southern oscillation index. Hydrological Processes. Vol. 24. Iss. 4 p. 504–514.
  • DANDODIA A., SASTRI A.S. 2015. Impact of rainfall variability on water resources of chhattisgarh state with special reference of Mann-Kendall test statistics on the context of climate change: Impact of rainfall variability on water resources of Chhattisgarh state with special reference. Ecology, Environment and Conservation. Vol. 21(4) p. 125–132.
  • EASTERLING D.R., MEEHL G.A., PARMESAN C., CHANGNON S.A., KARL T.R., MEARNS L.O. 2000. Climate extremes: observations, modeling, and impacts. Science. Vol. 289. Iss. 5487 p. 2068–2074.
  • EVANS A.D., BENNETT J.M., EWENZ C.M. 2009. South Australian rainfall variability and climate extremes. Climate Dynamics. Vol. 33. Iss. 4 p. 477–493.
  • FANKHAUSER S., TOL R.S. 1997. The social costs of climate change: The IPCC second assessment report and beyond. Mitigation and Adaptation Strategies for Global Change. Vol. 1. Iss. 4 p. 385–403.
  • FUJIBE F., YAMAZAKI N., KATSUYAMA M., KOBAYASHI K. 2005. The increasing trend of intense precipitation in Japan based on four-hourly data for a hundred years. Sola. Vol. 1 p. 41–44.
  • GADGIL A. 1986. Annual and weekly analysis of rainfall and temperature for Pune: A multiple time series approach. Institute of Indian Geographers. Vol. 8. No. 1 p. 4–20.
  • GOSWAMI B.N., VENUGOPAL V., SENGUPTA D., MADHUSOODANAM M.S., XAVIER P.K. 2006. Increasing trends of extreme rain events over India in a warming environment. Science. Vol. 314. Iss. 5804 p. 1442–1445.
  • GROISMAN P.Y., KNIGHT R.W., KARL T.R. 2012. Changes in intense precipitation over the central United States. Journal of Hydrometeorology. Vol. 13 p. 47–66.
  • HAMED K.H., RAO A.R. 1998. A modified Mann-Kendall trend test for auto correlated data. Journal of Hydrology. 204. Iss. 1–4 p. 182–196.
  • HASAN M.M., DUNN P.K. 2011. Entropy, consistency in rainfall distribution and potential water resource availability in Australia. Hydrological Processes. Vol. 25(16) p. 2613–2622.
  • HOUGHTON J.G. 1979. A model for orographic precipitation in the north-central Great Basin. Monthly Weather Review. Vol. 107(11) p. 1462–1475.
  • HUANG D., LICUANAN W.Y., HOEKSEMA B.W., CHEN C.A., ANG P.O., HUANG H., YEEMIN T. 2015. Extraordinary diversity of reef corals in the South China Sea. Marine Biodiversity. Vol. 45(2) p. 157–168.
  • IWASHIMA T., YAMAMOTO R. 1993. Notes and correspondence: A statistical analysis of the extreme events: longterm trend of heavy daily precipitation. Journal of the Meteorological Society of Japan. Ser. 2. Vol. 71(5) p. 637–640.
  • JAIN S.K., KUMAR V. 2012. Trend analysis of rainfall and temperature data for India. Current Science. Vol. 102. No. 1 p. 37–49.
  • KARL T.R., KNIGHT R.W., PLUMMER N. 1995. Trends in high-frequency climate variability in the twentieth century. Nature. Vol. 377 (6546) p. 217–220.
  • KENDALL M. 1975a. Multivariate analysis. London. Charles Griffin. ISBN 0852642342 pp. 210.
  • KENDALL M.G. 1975b. Rank correlation methods. 4th ed. London. Charles Griffin pp. 202.
  • KUMAR V., JAIN S.K. 2010. Trends in seasonal and annual rainfall and rainy days in Kashmir Valley in the last century. Quaternary International. Vol. 212 p. 64–69.
  • KUNDZEWICZ Z.W., ROBSON A.J. 2004. Change detection in hydrological records-a review of the methodology/revue méthodologique de la détection de changements dans les chroniques hydrologiques. Hydrological Sciences Journal. Vol. 49. Iss. 1 p. 7–19.
  • KUNKEL K.E., ANDSAGER K., EASTERLING D.R. 1999. Long-term trends in extreme precipitation events over the conterminous United States and Canada. Journal of Climate. Vol. 12(8) p. 2515–2527.
  • KUNKEL K.E., STEVENS L.E., STEVENS S.E., SUN L., JANSSEN E., WUEBBLES D., DOBSON J.G. 2013. Regional climate trends and scenarios for the US National Climate Assessment: Part 9. Climate of the contiguous United States. NOAA Technical Report NESDIS 142-9 pp. 77.
  • LACOMBE G., MCCARTNEY M. 2014. Uncovering consistencies in Indian rainfall trends observed over the last half century. Climatic Change. Vol. 123. Iss. 2 p. 287–299.
  • LANDSEA C.W., GRAY W.M. 1992. The strong association between western Sahelian monsoon rainfall and intense Atlantic hurricanes. Journal of Climate. Vol. 5. Iss. 5 p. 435–453.
  • LEBEL T.G., BASTIN G., OBLED C., CREUTIN J.D. 1987. On the accuracy of areal rainfall estimation: A case study. Water Resources Research. Vol. 23. Iss. 2 p. 2123–2134.
  • MESHRAM S.G., SINGH V.P., MESHRAM C. 2016. Long-term trend and variability of precipitation in Chhattisgarh State, India. Theoretical and Applied Climatology. Vol. 129. Iss. 3–4 p. 729–744.
  • MHA 2011. Census of India 2011. Rural urban distribution of population (Provisional population totals) [online]. [Access 22.07.2017]. New Delhi. Available at: http://censusindia.gov.in/2011-prov-results/paper2/data_files/india/Rural_Urban_2011.pdf
  • MIRZA M.Q., WARRICK R.A., ERICKSEN N.J., KENNY G.J. 1998. Trends and persistence in precipitation in the Ganges, Brahmaputra and Meghna River basins. Hydrological Sciences Journal. Vol. 43. Iss. 6 p. 845–858.
  • MURPHY B.F., TIMBAL B. 2008. A review of recent climate variability and climate change in southeastern Australia. International Journal of Climatology. Vol. 28. Iss. 7 p. 859–879.
  • PETTITT A. 1979. A non-parametric approach to the changepoint problem. Journal of the Royal Statistical Society. Ser. C. Applied Statistics. Vol. 28. No. 2 p. 126–135.
  • PLUMMER N., SALINGER M.J., NICHOLLS N., SUPPIAH R., HENNESSY K.J., LEIGHTON R.M., TREWIN B., PAGE C.M., LOUGH J.M. 1999. Changes in climate extremes over the Australian region and New Zealand during the twentieth century. Climatic Change. Vol. 42. Iss. 1 p. 183–202.
  • RAUCH W., DETOFFOL S. 2006. Climate change induced trends in high resolution rainfall. In: Extreme Precipitation, Multi source Data Measurement and Uncertainty. Proc. 7th International Workshop on Precipitation in Urban Areas. 7–10.12.2006 St. Moritz p. 7–10.
  • ROY S.S., ROUAULT M. 2013. Spatial patterns of seasonal scale trends in extreme hourly precipitation in South Africa. Applied Geography. Vol. 39 p. 151–157.
  • SEN P.K. 1968. Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association. Vol. 63 p. 1379–1389.
  • SEN ROY S., BALLING R.C. 2004. Trends in extreme daily precipitation indices in India. International Journal of Climatology. Vol. 24. Iss. 4 p. 457–466.
  • SIEGEL S., CASTELLAN N.J. 1988. Non parametric statistics for the behavioural sciences. 2nd ed. McGraw-Hill. ISBN 0070573573 pp. 399.
  • SINGH V.P., CHOWDHURY P.K. 1986. Comparing some methods of estimating mean areal rainfall. Water Resources Bulletin. Vol. 22 p. 275–282.
  • SINGH P., KUMAR V., THOMAS T., ARORA M. 2008. Changes in rainfall and relative humidity in river basins in northwest and central India. Hydrological Processes. Vol. 22. Iss. 16 p. 2982–2992.
  • SINHA RAY K.C., DE U.S. 2003. Climate change in India as evidenced from instrumental records. Bulletin of the World Meteorological Organization. Vol. 52. Iss. 1 p. 53–58.
  • SINHA RAY K.C., SRIVASTAVA A.K. 1999. Is there any change in extreme events like droughts and heavy rainfall. INTROPMET-97, IIT New Delhi, p. 2–5.
  • SUPPIAH R., HENNESSY K.J. 1998. Trends in total rainfall, heavy rain events and number of dry days in Australia, 1910–1990. International Journal of Climatology. Vol. 18(10) p. 1141–1164.
  • TABARI H., AGHAJANLOO M.B. 2013. Temporal pattern of aridity index in Iran with considering precipitation and evapotranspiration trends. International Journal of Climatology. Vol. 33 p. 396–409.
  • TAXAK A.K., MURUMKAR A.R., ARYA D.S. 2014. Long term spatial and temporal rainfall trends and homogeneity analysis in Wainganga basin, Central India. Weather and Climate Extremes. Vol. 4 p. 50–61.
  • THEIL H. 1950. A rank-invariant method of linear and polynomial regression analysis. P. 3. In: Proceedings of the Royal Netherlands Academy of Sciences. Vol. 53 p. 1397–1412.
  • TRENBERTH K.E. 1998. Atmospheric moisture residence times and cycling: Implications for rainfall rates and climate change. Climatic Change. Vol. 39. Iss. 4 p. 667–694.
  • VENTURA F., PISA P.R., ARDIZZONI E. 2002. Temperature and precipitation trends in Bologna (Italy) from 1952 to 1999. Atmospheric Research. Vol. 61. Iss. 3 p. 203–214.
  • WANG Y., ZHOU L. 2005. Observed trends in extreme precipitation events in China during 1961–2001 and the associated changes in large‐scale circulation. Geophysical Research Letters. Vol. 32. Iss. 9. DOI 10.1029/2005GL022574.
  • XU Z., TAKEUCHI K., ISHIDAIRA H. 2003. Monotonic trend and step changes in Japanese precipitation. Journal of Hydrology. Vol. 279 p. 144–150.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4a6e7e13-713a-4f22-ab7f-e7dc9493580a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.