Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This research was conducted to examine the effect of SiO2 and TiO2 nanoparticles on the mechanical and morphological properties of wood flour-polypropylene nanocomposites. For this purpose, 60 (wt.%) wood flour was mixed with polypropylene. 4% maleic anhydride polypropylene was also used in all the compounds as a coupling agent. In addition, SiO2 and TiO2 nanoparticles were used as mineral fillers at 0, 1, 3 and 5%. The mixing process was performed inside an extruder and the test specimens were prepared by injection molding method. Bending and tensile tests were then performed on the specimens according to the ASTM standard. Scanning electron microscopy (SEM) was also used to show the distribution of nanoparticles over the composite substrate. The results showed that the composites containing nano-SiO2 had more favorable mechanical properties compared to those containing nano-TiO2. On the other hand, increasing the nanoparticles from 0 to 3% led to an increase in mechanical strength, however, the addition of more nano-fillers resulted in a significant decrease in mechanical strength. The results of SEM also showed a proper dispersion of nanoparticles at 1 and 3% levels, but using 5% nanoparticles caused the particles to aggregate on the composite substrate.
Rocznik
Tom
Strony
127--137
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
- Islamic Azad University, Chalous, Iran
autor
- Wood Composite Products, University of Zabol, Zabol, Iran
autor
- Wood & Paper Science and Industry, University of Zabol, Zabol, Iran
autor
- Wood & Paper Science and Industry, University of Zabol, Zabol, Iran
Bibliografia
- Altan M., Yildirim H. [2010]: Mechanical and morphological properties of polypropylene and high density polyethylene matrix composites reinforced with surface modified Nano sized TiO2 particles. World Academy of Science, Engineering and Technology, 4: 246-251
- Albala R., Olmos D., Aznar A.J., Baselga J., González-Benito J. [2004]: Fluorescent labels to study thermal transition in epoxy/silica composites. Journal of Colloid Interface Science 277: 71-78
- Bikiaris D., Karavelidis V., Karayannidis G. [2006]: A new approach to prepare poly (ethylene terephthalate)/silica nanocomposites with increased molecular weight and fully adjustable branching or crosslinking by SSP. Macromolecular Rapid Communications 27: 1199-1205
- Chae D.W., Kim B.C. [2007]: Effects of introducing silica particles on the rheological properties and crystallization behaviour of poly (ethylene terephthalate). Journal of Materials Science 42: 1238-1244
- Chen X., You B., Zhou S., Wu L. [2003]: Surface and interface characterization of polyester-based polyurethane/nano-silica composites. Surface and Interface Analysis 35: 369-374
- Deka B.K., Maji T.K. [2012]: Effect of SiO2 and nanoclay on the properties of wood polymer nanocomposite. Polymer Bulletin 10: 60-75
- Garakani M.M., Arefazar A., Nazockdast H. [2007]: Study on morphological, rheological and mechanical properties of PP/SEBSMA/ SGF hybrid composites. Journal of Applied Polymer Science 104: 2704-2710
- Guyard A., Persello J., Boisvert J.P., Cabane B. [2006]: Relationship between the polymer/silica interaction and properties of silica composite materials. Journal of Polymer Science Part B Polymer Physics 44: 1134-1146
- Ishak Mohd Z.A., Chow W.S., Rochmadi T.T. [2008]: Compatibilizing effect of SEBS-g-MA on the mechanical properties of different types of OMMT filled polyamide 6/polypropylene composites. Composites, Part A, 39: 1802-1814
- Ismaeilimoghadam S., Shamsian M., Bayat Kashkoli A., Kord B. [2015]: Evaluation of effect of Nano SiO2 on the physical, mechanical and morphological properties of hybrid Nano composite from polypropylene-wood flour. Iranian Journal of Wood and Paper Science Research (Persian) 30: 266-277
- Khatibzadeh M., Mohseni M., Moradian S. [2010]: Studying the dyeing of fiber grade PET using a hyper branched polymeric additive. Journal of Color Science and Technology (Persian), 4: 25-32
- Kord B., Taghizadeh Haratbar D. [2014]: Influence of fiber surface treatment on the physical and mechanical properties of wood flour-reinforced polypropylene bionanocomposites. Journal of Thermoplastic Composite Materials, DOI: 10.1177/0892705714551592
- Kruenate J., Tongpool R., Panyathanmaporn T. [2004]: Optical and mechanical properties of polypropylene modified by metal oxides. Surface and Interface Analysis 36: 1044-1047
- Liu X.Q., Wang Y., Yang W., Liu Z.Y., Luo Y., Xie B.H., Yang M.B. [2012]: Control of morphology and properties by the selective distribution of nano-silica particles with different surface characteristics in PA6/ABS blends. Journal of Materials Science 47: 4620-4631
- Njuguna J., Pielichowski K., Desai S. [2008]: Nanofiller-reinforced polymer nanocomposites. Polymers for Advanced Technologies 19: 947-959
- Oburoğlu N., Ercan N., Durmus A., Kaşgöz A. [2012]: Effects of halloysite nanotube on the mechanical properties and nonisothermal crystallization kinetics of poly(butylene terephthalate) (PBT). Journal of Macromolecular Science Part B Physics 51: 860-879
- Parvinzadeh M., Moradian S., Rashidi A., Yazdanshenas M.E. [2010]: Surface characterization of polyethylene terephthalate/silica nanocomposites. Applied Surface Science 256: 2792-2802
- Ramos V.D., Helson da costa M., Vera Soares L.P., Regina Nascimento S.V. [2005]: Modification of epoxy resin: a comparison of different types of elastomer. Polymer Testing 24: 387-394
- Rong M.Z., Zhang M.Q., Pan S.L., Lehmann B., Friedrich K. [2004]: Analysis of the interfacial interactions in polypropylene/silica nanocomposites. Polymer International 53: 176-183
- Soon K., Jones E.H., Rajeev R.S., Menary G., Martin P.J., Armstrong C.G. [2012]: Morphology, barrier, and mechanical properties of biaxially deformed poly(ethylene terephthalate)-mica nanocomposites. Polymer Engineering and Science 52: 532-548
- Tian X., Zhang X., Liu W., Zheng J., Ruan C., Cui P. [2006]: Preparation and properties of poly(ethylene terephthalate)-silica nanocomposites. Journal of Macromolecular Science Part B Physics 45: 507-513
- Yang H., Zhang Q., Guo M., Wang C., Du N.R., Fu Q. [2006]: Study on the phase structures and toughening mechanism in PP/EPDM/SiO2 ternary composites. Polymer 47 [6]: 2106-2115
- Yang Y., Gu H. [2007]: Preparation and properties of deep dye fibers from poly (ethylene terephthalate)/SiO2 nanocomposites by in situ polymerization. Journal of Applied Polymer Science 105: 2363-2369
- Zhang L., Tam K.C., Gan L.H., Yue C.Y., Lam Y.C., Hu X. [2003a]: Effect of nano-silica filler on the rheological and morphological properties of polypropylene/liquid-crystalline polymer blends. Journal of Applied Polymer Science 87: 1484-1492
- Zhang M.Q., Rong M.Z., Zhang H.B., Rich K.F. [2003b]: Mechanical properties of low nano-silica filled high density polyethylene composites. Polymer Engineering and Science 43: 490-500
- Zhang X., Tian X., Zheng J., Yao X., Liu W., Cui P., Li Y. [2008]: Relationship between microstructure and tensile properties of PET/silica nanocomposite fibers. Journal of Macromolecular Science Part B Physics 47: 368-377
- List of standards
- American Society for Testing and Materials. ASTM. [2013]: Standard practice for conditioning plastics for testing. ASTM D618-99, for testing, Annual book of ASTM standards, Philadelphia, ASTM D618-99
- American Society for Testing and Materials. ASTM. [2010]: Standard test method for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. Annual book of ASTM standards, Philadelphia, ASTM D790
- American Society for Testing and Materials. ASTM. [2010]: Standard test method for tensile properties of plastics. Annual book of ASTM standards, Philadelphia, ASTM D638
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4a6c7dfa-cf5d-4dd2-bd13-df4d8e5cfe39