PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Photophysical investigations of the organic compounds synthesised from waste poly(ethylene terephthalate)

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the photophysical investigations of two organic compounds synthesised directly by the aminolysis depolymerisation of the waste poly(ethylene terephthalate) (rPET) with aromatic amines, i.e., aniline and 3-amino-N-hexyl-1,8-naphthalimide without use of a catalyst. The chemical structure was confirmed by 1H-NMR and 13C-NMR, as well as FT-IR. The thermal, electrochemical and optical studies of the obtained derivatives were performed. The presented compounds were thermally stable up to 360 °C, and the glass transition temperature (Tg) occurred for the compound with the 1,8-naphthalimide units. The electrochemical investigations of the synthesised compounds have revealed one oxidation process and two reduction processes for the compound with the 1,8-naphthalimide fragments. The tested derivatives were characterised by a low-lying highest occupied molecular orbital (HOMO) level (below –6.09 eV) and an energy-band gap (Eg) below 3.10 eV. The obtained molecules were absorbed in the range of 204 nm - 445 nm and emitted light from a purple to a green spectral region deepened on the used solvent with low quantum yields. The blends with poly(3-hexylthiophene2,5-diyl) (P3HT), which is used as a donor in the bulk heterojunction solar cells (BHJ), and amide derivative with 1,8-naphthalimide fragments were made, and the emission quenching of poly(3-hexylthiophene-2,5-diyl) (P3HT) was recorded. The presented results of the photophysical investigations have opened new possibilities for obtaining functional materials from recycled poly(ethylene terephthalate) (rPET).
Rocznik
Strony
253--266
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
  • University of Silesia, ul. Szkolna 9, 40-006 Katowice, Poland, phone +48 32 359 15 14
  • University of Silesia, ul. Szkolna 9, 40-006 Katowice, Poland, phone +48 32 359 15 14
  • University of Silesia, ul. Szkolna 9, 40-006 Katowice, Poland, phone +48 32 359 15 14
  • Centre of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland, phone +48 32 271 60 77 w. 114
Bibliografia
  • [1] Nistico R. Polyethylene terephthalate (PET) in the packaging industry. Polymer Testing. 2020;90:106707. DOI: 10.1016/j.polymertesting.2020.106707.
  • [2] Chen S, Xie S, Guang S, Bao J, Zhang X, Chen W. Crystallization and thermal behaviors of poly(ethylene terephthalate)/bisphenols complexes through melt post-polycondensation. Polymers. 2020;12:3053. DOI: 10.3390/polym12123053.
  • [3] Suhaimi NAS, Muhamad F, Razak NAA, Zeimaran E. Recycling of polyethylene teraphthalate wastes: A review of technologies, routes, and applications. Polymer Eng Sci. 2022:1-21. DOI: 10.1002/pen.26017.
  • [4] Barber NA. Polyethylene Teraphthalate Uses, Properties and Degradation. New York: Nova Science Publishers, Inc; 2017. ISBN: 9781536119916.
  • [5] Qian K, Kumar A. Recent advances in utilization of biochar. Renew Sust Energy Rev. 2015;42:1055-64. DOI: 10.1016/j.rser.2014.10.074.
  • [6] Rabek JF. Polimery i ich zastosowanie interdyscyplinarne (Polymers and their interdisciplinary applications). Warszawa: Wydawnictwo Naukowe PWN; 2020. ISBN: 9788301210007.
  • [7] Saebea D, Ruengrit P, Arpornwichanop A, Patcharavorachot Y. Gasification of plastic waste for synthesis gas production. Energy Reports. 2020;6:202-07. DOI: 10.1016/j.egyr.2019.08.043.
  • [8] Soong YHV, Sobkowicz MJ, Xie D. Recent advances in biological recycling of polyethylene. Bioengineering. 2022;9:1-27. DOI: 10.3390/bioengineering9030098.
  • [9] Dissanayake L, Jayakody LN. Engineering microbes to bio-upcycle polyethylene terephthalate. Front Bioeng Biotechnol. 2021;2:656465. DOI: 10.3389/fbioe.2021.656465.
  • [10] Sabu T, Kanny K, Thomas MG, Rane A, Abitha VK. Recycling of Polyethylene Terephthalate Bottles. New York: Elsevier Inc; 2018. ISBN: 9780128113615. DOI: 10.1016/C2016-0-01084-7.
  • [11] Yue H, Zhao Y, Ma X, Gong J. Ethyleneglycol: properties, synthesis, and applications. Chem Soc Rev. 2012;41:4218-44. DOI: 10.1039/C2CS15359A.
  • [12] Larocca JP, Sharkawi MAY. Synthesis of some substituted amides of terephthalic and isophthalic acids. J Pharmaceutical Sci. 1967;56:916-8. DOI: 10.1002/jps.2600560732.
  • [13] Sellarajah S, Lekishvili T, Bowring C, Thompsett AR, Rudyk H, Birket ChR, et al. Synthesis of analogues of congo red and evaluation of their anti-prion activity. J Med Chem. 2004;47:5515-34. DOI:10.1021/jm049922t.
  • [14] Kurandina D, Huang B, Xu W, Hanikiel N, Daru A, Stroscio GD, et al. A porous crystalline nitrone-linked covalent organic framework. Communications. 2023;62:202307674. DOI: 10.1002/anie.202307674.
  • [15] Wang XL, Mu B, Lin HY, Yang S, Liu GCh. Two novel 3D copper(II) complex based on a rigid bis-pyridyl-bis-amide and two polycarboxylates mixed ligands: assembly, structures and properties. J Mol Structure. 2013;1036:380-5. DOI: 10.1016/j.molstruc.2012.12.001.
  • [16] Cheng H, Shang M, He Y, Shentu B, Gao Z. Synthesis and effect on N,N’-diphenylterephthalamide on crystallization of isotactic polypropylene. Polymer Sci. 2020;62:473-82. DOI: 10.1134/S1560090420050036.
  • [17] Kotowicz S, Korzec M, Siwy M, Golba S, Małecki JG, Janeczek H, et al. Novel 1,8-naphthalimides substituted at 3-C position: Synthesis and evaluation of thermal, electrochemical and luminescent properties. Dyes Pig. 2018;158:65-78. DOI: 10.1016/j.dyepig.2018.05.017.
  • [18] Bujak P, Kulszewicz-Bajer I, Zagorska M, Maurel V, Wielgus I, Proń A. Polymers for electronics and spintronics. Chem Soc Rev. 2013;42:8895-999. DOI: 10.1039/C3CS60257E.
  • [19] Pezz N, Janiska MCh, Imhof W. The first application of quantitative 1H NMR spectroscopy as a simple and fast method of identification and quantification of microplastic particles (PE, PET and PS). Anal Bio Chem. 2018;411:823-33. DOI: 10.1007/s00216-018-1510-z.
  • [20] Dian HL, Meng FL, Yang ChX, Yan XP. Irreverible amide-linked covalent organic framework for selective and ultrafast gold recovery. Angew Chemie. 2020;59:17607-13. DOI: 10.1002/a.nie.202006535.
  • [21] Ackermann SM, Lachenmeier DW, Kuballa T, Schutz B, Spraul M, Bunzel M. NMR-based differentiation of conventionally from organically produced chicken eggs in Germany. Magn Reson Chem. 2019;57:579-88. DOI: 10.1002/mrc.3920143.
  • [22] Wilsens CHRM, Deshmukh YS, Noordover BAJ, Rastogi S. Influence of the 2,5-furandicarboxamide moiety on hydrogen bonding in aliphatic-aromatic poly(ester amide)s. Macromolecules. 2014;47:6196-206. DOI: 10.1021/ma501310f.
  • [23] Lima JC, Costa ARM, Sousa JC, Arruda SA, Almeida YMB. Thermal behavior of polyethylene terephthalate/organoclay nanocomposites: investigating copolymers as metrices. Polymer Composites. 2021;42:849-64. DOI: 10.1002/pc.25870.
  • [24] Cheng N, Yan Q, Liu S, Zhao D. Probing the intermolecular interactions of aromatic amides containing N-heterocycles and triptycene. CrystEngComm. 2014;16:4265-73. DOI: 10.1039/C4CE00089G.
  • [25] Kotowicz S, Korzec M, Pająk AK, Golba S, Małecki JG, Siwy M, et al. New acceptor-donor-acceptor systems based on bis-(imino-1,8-naphthalimide). Materials. 2021;14:2714-32. DOI: 10.3390/ma14112714.
  • [26] Espinoza EM, Clark JA, Derr JB, Bao D, Georgieva B, Quina FH, et al. How do amides affect the electronic properties of pyrene? ACS Omega. 2018;3:12857-67. DOI: 10.1021/acsomega.8b01581.
  • [27] Alonso-Navarro MJ, Harbuzaru A, Martinez-Fernandez M, Camero PP, Navarrere JTL, Ramos MM, et al. Synthesis and electronic properties of nitrogen-doped π-extended polycyclic aromatic dicarboximides with multiple redox processes. J Mater Chem C. 2021;9:7936-49. DOI: 10.1039/D1TC01239H.
  • [28] Amin MF, Gnida P, Kotowicz S, Małecki JG, Siwy M, Nitschke P, et al. Spectroscopic and physicochemical investigations of azomethines with triphenylamine core towards optoelectronics. Materials. 2022;15:7197-214. DOI: 10.3390/ma15207197.
  • [29] Kaim A, Piotrowski P, Zarębska K, Bogdanowicz KA, Przybył W, Kwak A, et al. Thermal imaging and deep optical and electrochemical study of C70 fullerene derivatives with thiophene, pyrrolidine or indene moieties along with electropolymerization with thiophene substituted imine: Blends with P3HT and PTB7. Electrochim Acta. 2022;426:140741. DOI: 10.1016/j.electacta.2022.140741.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4a6bf958-bb1d-49cf-a897-8c6642359648
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.