Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The predominant method of the sewage sludge management in Poland is land disposal. However, since 01/01/2013, this method will be prohibited. Therefore, there is a strong need for the development of thermal methods of sludge disposal. In Polish legal system sewage sludge may be named as biomass or waste. For the purposes of determining the obligations of environmental regulations the definition of the Minister of Environment should be used. When disposing of sewage sludge in an amount up to 1% by weight of fuel, emission standards for fuel do not change. At the disposal of sewage in quantities of more than 1%, should be conducted continuous measurement of emissions, including HCl, HF, and continuous measurements of flue gas parameters (as for the installation of waste disposal). In order to meet the requirement to porduce energy from renewable sources we use the definition of Minister of Economy. In this case, in accordance with applicable law, sewage sludge shall be considered as pure biomass, thus it is CO2 neutral. The use of sewage sludge as a fuel requires the determination of fundamental combustible properties. These properties should be in accordance with the requirements put fuels as an energy source. The paper presents the results of a detailed physico-chemical analysis of dried sewage sludge produced in the two Polish wastewater treatment plants. The results were compared with five representatives of biomass fuels: straw of wheat, straw of rape, willow, pine and oak sawdust. Ultimate and proximate analyses include a detailed analysis of fuel and ash. The results clearly indicate that sludge is a very valuable fuel similar to “traditional” biomass.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
17--21
Opis fizyczny
Bibliogr. 20 poz., rys.
Twórcy
autor
- Silesian University of Technology, Institute of Thermal Technology, Konarskiego 22, 44-100 Gliwice
Bibliografia
- 1. Buckley J.C., Schwarz P.M. 2003. Renewable energy from gasification of manure: An innovative technology in search of fertile policy. Environmental Monitoring and Assessment, 84: 111-127.
- 2. CEN/TS15400:2006 Solid recovered fuels. Methods for the determination of calorific value
- 3. Dąbrowski J., Piecuch T. 2011. Badania laboratoryjne nad możliwością współspalania osadów ściekowych wraz z odpadami gumowymi. Inżynieria Ekologiczna, 25: 58-66.
- 4. Hattingh B.B., Everson R.C., Neomagus H.W.J.P., Bunt J.R. 2011. Assessing the catalytic effect of coal ash constituents on the CO2 gasification rate of high ash, South African coal. Fuel Processing Technology, 92: 2048-2054.
- 5. Kaszubska-Bauman H., Sikorski M. 2011. Charakterystyka ilościowa i jakościowa osadów ściekowych pochodzących z małych oczyszczalni ścieków w powiecie płockim. Inżynieria Ekologiczna, 25: 20-29.
- 6. Marrero T.W., McAuley B.P., Sutterlin W.R., Morris J.S., Manahan S.E. 2004. Fate of heavy metals and radioactive metals in gasification of sewage sludge. Waste Management, 24: 193-198.
- 7. Meng X., de Jong W., Pal R., Verkooijen A.H.M. 2010. In bed and downstream hot gas desulphurization during solid fuel gasification: A review. Fuel Processing Technology, 9: 964–981.
- 8. Morris M., Waldheim L. 1998. Energy recovery from solid waste fuels using advanced gasification technology. Waste Management, 18: 557-564.
- 9. PN-EN 14774-3:2010 – Solid Biofuels – methods for moisture determining using drier method. Part 3 – moisture analysis in general sample.
- 10. PN-EN 15402:2011 – Solid recovered fuels – Determination of volatile content.
- 11. PN-EN 15403:2011 – Solid recovered fuels – Determination of ash content
- 12. Skoulou V., Kantarelis E., Arvelakis S., Yang W., Zabaniotou A. 2009. Effect of biomass leaching on H2 production, ash and tar behavior during high temperature steam gasification (HTSG) process. International Journal of Hydrogen Energy, 34: 5666-5673.
- 13. Środa K., Kijo-Kleczkowska A., Otwinowski H. 2012. Termiczne unieszkodliwianie osadów ściekowych. Inżynieria Ekologiczna, 28: 67-81.
- 14. Vamvuka D., Zografos D., Alevizos G. 2008. Control methods for mitigating biomass ash-related problems in fluidized beds. Bioresource Technology, 99: 3534-3544.
- 15. Werle S. 2012. Modeling of the reburning process using sewage sludge-derived syngas. Waste Management, 32: 753-758.
- 16. Werle S. 2011. Estimation of reburning potential of syngas from sewage sludge gasification process. Chemical and Process Engineering, 4: 411-421.
- 17. Werle S., Wilk R.K. 2011. Reburning potential of gas from the sewage sludge gasification process. Archivum Combustionis, 31: 55-62.
- 18. Werle S. 2012. Analysis of the possibility of the sewage sludge thermal treatment. Ecological Chemistry and Engineering A, 19: 137-144.
- 19. Werle S. 2012. A reburning process using sewage sludge-derived syngas. Chemical Papers, 2: 99-107.
- 20. Zhu W., Xu Z.R., Li L., He C. 2011. The behavior of phosphorus in sub- and super-critical water gasification of sewage sludge. Chemical Engineering Journal, 171: 190-196.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4a699692-fd9d-47da-8b6f-445d3b614ece