Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Macroplastics are a global threat to the aquatic environment and will degrade into microplastics over time. Its presence in canal causes pollution and inhibits water flow, causing flooding in urban areas; therefore, it is essential to identify and monitor its presence. Addressing knowledge gaps is critical in determining solutions for mitigation purposes. In visual object detection studies, aerial mapping is developed with advanced technology, such as unmanned aerial vehicles (UAV). This research aims to conduct aerial mapping experiments to find the right formula or technical reference for detecting macroplastic waste objects floating on the surface of the canal, including flight altitude, exposure to sunlight, and the influence of season on object detection. Aerial mapping will be done in densely populated urban canals in Southeast Asia, Indonesia, and Makassar City. The aerial mapping survey method will be used, and then the data will be processed in the digitization process and object detection with GIS. The analysis kernel in GIS tools will be used to see the distribution density of macroplastics. The research results show that autoblock occurs at heights of 5m and 10m, but this autoblock can be minimized at a flight height of 15 m. Apart from that, height also affects flight duration. The lower flying height will result in better visual accuracy and better resolution. However, at a height of 15m, macroplastic objects were still detected on a moderate scale. This research successfully distinguished various plastic waste materials, the most found being the soft polyolefin category in plastic bags. Monitoring results detected 321 items of macroplastics in the dry season and 1,163 in the rainy season, or a threefold increase with conditions spread thinly in the dry season. In the rainy season, they gather densely on one side of the canal.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
271--284
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
autor
- Graduate Programs in Environmental Systems, Graduate School of Environmental Engineering, The University of Kitakyushu, Kitakyushu, 808-0135, Japan
autor
- Department of Urban and Regional Planning, Faculty of Engineering, Hasanuddin University, Makassar, 92119, Indonesia
autor
- Graduate Programs in Environmental Systems, Graduate School of Environmental Engineering, The University of Kitakyushu, Kitakyushu, 808-0135, Japan
- Department of Natural Science Education, School of Postgraduate Studies, Universitas Pakuan, Bogor, 16143, Indonesia
autor
- Graduate Programs in Environmental Systems, Graduate School of Environmental Engineering, The University of Kitakyushu, Kitakyushu, 808-0135, Japan
- Research Centre for Urban Energy Management, Institute of Environmental Science and Technology, The University of Kitakyushu, Kitakyushu, 808-0135, Japan
Bibliografia
- 1. Andrady, A.L. 2011. Microplastics in the marine environment. Marine Pollution Bulletin, 62(8), 1596–1605. https://doi.org/10.1016/j.marpolbul.2011.05.030
- 2. Andriolo, U., Garcia-Garin, O., Vighi, M., Borrell, A., Gonçalves, G. 2022. Beached and floating litter surveys by unmanned aerial vehicles: Operational analogies and differences. Remote Sensing, 14(6), 1336. https://doi.org/10.3390/rs14061336
- 3. Anggraini, N., Muis, R., Ariani, F., Yunus, S. 2021. Model of solid waste management (SWM) in coastal slum settlement: Evidence for Makassar City. Nature Environment and Pollution Technology, 20(2). https://doi.org/10.46488/NEPT.2021.v20i02.002
- 4. Antara, I.M.O.G., Nuarsa, I.W., Sudarma, I.M., Hendrawan, I.G., Cordova, M.R. 2024. Developing beach litter monitoring system based on reflectance characteristics and its abundance. Ecological Engineering & Environmental Technology, 25(5), 61–78. https://doi.org/10.12912/27197050/184253
- 5. Barnes, D.K.A., Galgani, F., Thompson, R.C., Barlaz, M. 2009. Accumulation and fragmentation of plastic debris in global environments. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 1985–1998. https://doi.org/10.1098/rstb.2008.0205
- 6. Blettler, M.C.M., Ulla, M.A., Rabuffetti, A.P., Garello, N. 2017. Plastic pollution in freshwater ecosystems: Macro-, meso-, and microplastic debris in a floodplain lake. Environmental Monitoring and Assessment, 189(11), 581. https://doi.org/10.1007/s10661-017-6305-8
- 7. Colefax, A.P., Butcher, P.A., Kelaher, B.P. 2018. The potential for unmanned aerial vehicles (UAVs) to conduct marine fauna surveys in place of manned aircraft. ICES Journal of Marine Science, 75(1), 1–8. https://doi.org/10.1093/icesjms/fsx100
- 8. Conchubhair, D.Ó., Fitzhenry, D., Lusher, A., King, A.L., Van Emmerik, T., Lebreton, L., RicaurteVillota, C., Espinosa, L., O’Rourke, E. 2019. Joint effort among research infrastructures to quantify the impact of plastic debris in the ocean. Environmental Research Letters, 14(6), 065001. https://doi.org/10.1088/1748-9326/ab17ed
- 9. Emmerik, T., Schwarz, A. 2020. Plastic debris in rivers. WIREs Water, 7(1). https://doi.org/10.1002/wat2.1398
- 10. Escobar-Sánchez, G., Haseler, M., Oppelt, N., Schernewski, G. 2021. Efficiency of aerial drones for macrolitter monitoring on Baltic Sea beaches. Frontiers in Environmental Science, 8, 560237. https://doi.org/10.3389/fenvs.2020.560237
- 11. Fallati, L., Polidori, A., Salvatore, C., Saponari, L., Savini, A., Galli, P. 2019. Anthropogenic Marine Debris assessment with unmanned aerial vehicle imagery and deep learning: A case study along the beaches of the Republic of Maldives. Science of The Total Environment, 693, 133581. https://doi.org/10.1016/j.scitotenv.2019.133581
- 12. Fazey, F.M.C., Ryan, P.G. 2016. Biofouling on buoyant marine plastics: An experimental study into the effect of size on surface longevity. Environmental Pollution, 210, 354–360. https://doi.org/10.1016/j.envpol.2016.01.026
- 13. Flynn, K., Chapra, S. 2014. Remote sensing of submerged aquatic vegetation in a shallow NonTurbid River using an unmanned aerial vehicle. Remote Sensing, 6(12), 12815–12836. https://doi.org/10.3390/rs61212815
- 14. Frias, J.P.G.L., Nash, R. 2019. Microplastics: Finding a consensus on the definition. Marine Pollution Bulletin, 138, 145–147. https://doi.org/10.1016/j.marpolbul.2018.11.022
- 15. Galloway, T.S., Cole, M., Lewis, C. 2017. Interactions of microplastic debris throughout the marine ecosystem. Nature Ecology & Evolution, 1(5), 0116. https://doi.org/10.1038/s41559-017-0116
- 16. Garcia-Garin, O., Aguilar, A., Borrell, A., Gozalbes, P., Lobo, A., Penadés-Suay, J., Raga, J. A., Revuelta, O., Serrano, M., Vighi, M. 2020. Who’s better at spotting? A comparison between aerial photography and observer-based methods to monitor floating marine litter and marine mega-fauna. Environmental Pollution, 258, 113680. https://doi.org/10.1016/j.envpol.2019.113680
- 17. Geraeds, M., Van Emmerik, T., De Vries, R., Bin Ab Razak, M.S. 2019. Riverine plastic litter monitoring using unmanned aerial vehicles (UAVs). Remote Sensing, 11(17), 2045. https://doi.org/10.3390/rs11172045
- 18. Honingh, D., Van Emmerik, T., Uijttewaal, W., Kardhana, H., Hoes, O., Van De Giesen, N. 2020. Urban river water level increase through plastic waste accumulation at a rack structure. Frontiers in Earth Science, 8, 28. https://doi.org/10.3389/feart.2020.00028
- 19. Horton, A.A., Walton, A., Spurgeon, D.J., Lahive, E., Svendsen, C. 2017. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Science of The Total Environment, 586, 127–141. https://doi.org/10.1016/j.scitotenv.2017.01.190
- 20. Jambeck, J.R., Geyer, R., Wilcox, C., Siegler, T.R., Perryman, M., Andrady, A., Narayan, R., Law, K.L. 2015. Plastic waste inputs from land into the ocean. Science, 347(6223), 768–771. https://doi.org/10.1126/science.1260352
- 21. Lebreton, L.C.M., Van Der Zwet, J., Damsteeg, J.- W., Slat, B., Andrady, A., Reisser, J. 2017. River plastic emissions to the world’s oceans. Nature Communications, 8(1), 15611. https://doi.org/10.1038/ncomms15611
- 22. Lebreton, L., Slat, B., Ferrari, F., Sainte-Rose, B., Aitken, J., Marthouse, R., Hajbane, S., Cunsolo, S., Schwarz, A., Levivier, A., Noble, K., Debeljak, P., Maral, H., Schoeneich-Argent, R., Brambini, R., Reisser, J. 2018. Evidence that the great pacific garbage patch is rapidly accumulating plastic. Scientific Reports, 8(1), 4666. https://doi.org/10.1038/s41598-018-22939-w
- 23. Martin, C., Parkes, S., Zhang, Q., Zhang, X., McCabe, M.F., Duarte, C.M. 2018. Use of unmanned aerial vehicles for efficient beach litter monitoring. Marine Pollution Bulletin, 131, 662–673. https://doi.org/10.1016/j.marpolbul.2018.04.045
- 24. Meijer, L., Van Emmerik, T., Lebreton, L., Schmidt, C., Van Der Ent, R. 2019. Over 1000 rivers accountable for 80% of global riverine plastic emissions into the ocean [Preprint]. Engineering. https://doi.org/10.31223/OSF.IO/ZJGTY
- 25. Moore, C.J. 2008. Synthetic polymers in the marine environment: A rapidly increasing, long-term threat. Environmental Research, 108(2), 131–139. https://doi.org/10.1016/j.envres.2008.07.025
- 26. Muis, R., Al Fariz, R.D., Yunus, S., Tasrief, R., Rachman, I., Matsumoto, T. 2024. Investigating the potential of landfilled plastic waste—A case study of Makassar Landfill, Eastern Indonesia. Ecological Engineering & Environmental Technology, 25(3), 185–196. https://doi.org/10.12912/27197050/178529
- 27. Rahmadya, A., Hidayat, Aisyah, S., Husrin, S., Olsen, M. 2022. Monitoring of plastic debris in the lower Citarum River using unmanned aerial vehicles (UAVs). IOP Conference Series: Earth and Environmental Science, 950(1), 012080. https://doi.org/10.1088/1755-1315/950/1/012080
- 28. Taddia, Y., Corbau, C., Buoninsegni, J., Simeoni, U., Pellegrinelli, A. 2021. UAV Approach for detecting plastic Marine Debris on the Beach: A case study in the Po River Delta (Italy). Drones, 5(4), 140. https://doi.org/10.3390/drones5040140
- 29. Tasseron, P., Zinsmeister, H., Rambonnet, L., Hiemstra, A.-F., Siepman, D., Van Emmerik, T. 2020. Plastic hotspot mapping in urban water systems. Geosciences, 10(9), 342. https://doi.org/10.3390/geosciences10090342
- 30. Thoban, M.I., Hizbaron, D.R. 2020. Urban resilience to floods in parts of Makassar, Indonesia. E3S Web of Conferences, 200, 01007. https://doi.org/10.1051/e3sconf/202020001007
- 31. Thompson, R.C., Swan, S.H., Moore, C.J., Vom Saal, F.S. 2009. Our plastic age. Philosophical transactions of the royal society B: Biological Sciences, 364(1526), 1973–1976. https://doi.org/10.1098/rstb.2009.0054
- 32. Topouzelis, K., Papakonstantinou, A., Garaba, S.P. 2019. Detection of floating plastics from satellite and unmanned aerial systems (Plastic Litter Project 2018). International Journal of Applied Earth Observation and Geoinformation, 79, 175–183. https://doi.org/10.1016/j.jag.2019.03.011
- 33. Van Calcar, C.J., Van Emmerik, T.H.M. 2019. Abundance of plastic debris across European and Asian rivers. Environmental Research Letters, 14(12), 124051. https://doi.org/10.1088/1748-9326/ab5468
- 34. Van Emmerik, T., Loozen, M., Van Oeveren, K., Buschman, F., Prinsen, G. 2019. Riverine plastic emission from Jakarta into the ocean. Environmental Research Letters, 14(8), 084033. https://doi.org/10.1088/1748-9326/ab30e8
- 35. Van Emmerik, T., Roebroek, C., De Winter, W., Vriend, P., Boonstra, M., Hougee, M. 2020. Riverbank macrolitter in the Dutch Rhine–Meuse delta. Environmental Research Letters, 15(10), 104087. https://doi.org/10.1088/1748-9326/abb2c6
- 36. Van Sebille, E., Aliani, S., Law, K.L., Maximenko, N., Alsina, J.M., Bagaev, A., Bergmann, M., Chapron, B., Chubarenko, I., Cózar, A., Delandmeter, P., Egger, M., Fox-Kemper, B., Garaba, S. P., Goddijn-Murphy, L., Hardesty, B.D., Hoffman, M.J., Isobe, A., Jongedijk, C.E., Wichmann, D. 2020. The physical oceanography of the transport of floating marine debris. Environmental Research Letters, 15(2), 023003. https://doi.org/10.1088/1748-9326/ab6d7d
- 37. Wang, J., Tan, Z., Peng, J., Qiu, Q., Li, M. 2016. The behaviors of microplastics in the marine environment. Marine Environmental Research, 113, 7–17. https://doi.org/10.1016/j.marenvres.2015.10.014
- 38. Windsor, F.M., Durance, I., Horton, A.A., Thompson, R.C., Tyler, C.R., Ormerod, S.J. 2019. A catchment‐scale perspective of plastic pollution. Global Change Biology, 25(4), 1207–1221. https://doi.org/10.1111/gcb.14572
- 39. Zhang, Z., Zhu, L. 2023. A review on unmanned aerial vehicle remote sensing: Platforms, sensors, Data processing methods, and applications. Drones, 7(6), 398. https://doi.org/10.3390/drones7060398
- 40. Zhao, S., Zhu, L., Gao, L., Li, D. 2018. Limitations for microplastic quantification in the Ocean and recommendations for improvement and standardization. In: Microplastic Contamination in Aquatic Environments (pp. 27–49). Elsevier. https://doi.org/10.1016/B978-0-12-813747-5.00002-3
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4a59f076-f888-4353-bf45-21b0f748631c