PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Enhancing rice productivity and mitigating greenhouse gas emissions through manure maturity and water management in paddy soils

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study investigates the influence of manure maturity and water management practices on greenhouse gas (GHG) emissions and rice yield in paddy soils. Field experiments were conducted with different manure types (raw and mature) under two water management conditions: flooded and non-flooded. The emissions of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) were measured throughout the growing season, alongside rice yield, global warming potential (GWP), and greenhouse gas intensity (GHGI). The results revealed that mature manure (B2) under flooded conditions (G2) significantly reduced CO2 and CH4 emissions while enhancing rice yield (5.87 tons/ha) compared to raw manure treatments. The B2G2 treatment demonstrated the lowest GWP (153.49 kg CO2e/ha) and GHGI (26.16 kg CO2e/kg grain yield), indicating optimal environmental efficiency. In contrast, the B1G1 treatment (raw manure under non-flooded conditions) resulted in the highest GHG emissions and the lowest rice yield (3.57 tons/ha). This study highlights the potential of integrating mature organic amendments with controlled water management to reduce the environmental impact of rice cultivation while maintaining high productivity, offering a sustainable approach to rice farming in the face of climate change challenges.
Rocznik
Strony
313--322
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
  • Department of Agrotechnology, Faculty of Agriculture, Stiper Agricultural University, Special Region of Yogyakarta 55283, Indonesia
  • Department of Agrotechnology, Faculty of Agriculture, Stiper Agricultural University, Special Region of Yogyakarta 55283, Indonesia
autor
  • Department of Agrotechnology, Faculty of Agriculture, Stiper Agricultural University, Special Region of Yogyakarta 55283, Indonesia
autor
  • Department of Agrotechnology, Faculty of Agriculture, Stiper Agricultural University, Special Region of Yogyakarta 55283, Indonesia
  • Department of Agrotechnology, Faculty of Agriculture, Stiper Agricultural University, Special Region of Yogyakarta 55283, Indonesia
  • Plantation Management, Post Graduate School, Stiper Agricultural University, Special Region of Yogyakarta 55283, Indonesia
autor
  • Department of Agrotechnology, Faculty of Agriculture, Stiper Agricultural University, Special Region of Yogyakarta 55283, Indonesia
  • Department of Agricultural Engineering, Faculty of Agricultural Technology, Stiper Agricultural University, Special Region of Yogyakarta 55283, Indonesia
  • Plantation Management, Post Graduate School, Stiper Agricultural University, Special Region of Yogyakarta 55283, Indonesia
  • Research Center for Sustainable Production Systems and Life Cycle Assesment, National Research and Innovation Agency (BRIN), Bogor 16915, Indonesia
autor
  • Research Center for Sustainable Production Systems and Life Cycle Assesment, National Research and Innovation Agency (BRIN), Bogor 16915, Indonesia
autor
  • Research Center for Sustainable Production Systems and Life Cycle Assesment, National Research and Innovation Agency (BRIN), Bogor 16915, Indonesia
Bibliografia
  • 1. Bin Rahman, A. N. M. R., & Zhang, J. (2023). Trends in rice research: 2030 and beyond. Food and Energy Security, 12(2), e390. https://doi.org/10.1002/fes3.390
  • 2. Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R., & Zechmeister-Boltenstern, S. (2013). Nitrous oxide emissions from soils: How well do we understand the processes and their controls? Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1621), 20130122. https://doi.org/10.1098/rstb.2013.0122
  • 3. Dahlgreen, J., & Parr, A. (2024). Exploring the Impact of Alternate Wetting and Drying and the System of Rice Intensification on Greenhouse Gas Emissions: A Review of Rice Cultivation Practices. Agronomy, 14(2), 378. https://doi.org/10.3390/agronomy14020378
  • 4. Gao, R., Zhuo, L., Duan, Y., Yan, C., Yue, Z., Zhao, Z., & Wu, P. (2024). Effects of alternate wetting and drying irrigation on yield, water-saving, and emission reduction in rice fields: A global meta-analysis. Agricultural and Forest Meteorology, 353, 110075. https://doi.org/10.1016/j.agrformet.2024.110075
  • 5. Han, Y., Qi, Z., Chen, P., Zhang, Z., Zhou, X., Li, T., Du, S., & Xue, L. (2024). Water-saving irrigation mitigates methane emissions from paddy fields: The role of iron. Agricultural Water Management, 298, 108839. https://doi.org/10.1016/j.agwat.2024.108839
  • 6. Hassan, M. U., Aamer, M., Mahmood, A., Awan, M. I., Barbanti, L., Seleiman, M. F., Bakhsh, G., Alkharabsheh, H. M., Babur, E., Shao, J., Rasheed, A., & Huang, G. (2022). Management Strategies to Mitigate N2O Emissions in Agriculture. Life, 12(3), 439. https://doi.org/10.3390/life12030439
  • 7. Huang, J., & Hartemink, A. E. (2020). Soil and environmental issues in sandy soils. Earth-Science Reviews, 208, 103295. https://doi.org/10.1016/j.earscirev.2020.103295
  • 8. Islam, S. F., Sander, B. O., Quilty, J. R., de Neergaard, A., van Groenigen, J. W., & Jensen, L. S. (2020). Mitigation of greenhouse gas emissions and reduced irrigation water use in rice production through water-saving irrigation scheduling, reduced tillage and fertiliser application strategies. Science of The Total Environment, 739, 140215. https://doi.org/10.1016/j.scitotenv.2020.140215
  • 9. Lakshani, M. M. T., Deepagoda, T. K. K. C., Li, Y., Hansen, H. F. E., Elberling, B., Nissanka, S. P., Senanayake, D. M. J. B., Hamamoto, S., Babu, G. L. S., Chanakya, H. N., G., P. T., Arunkumar, P. G., Sander, B. O., Clough, T. J., & Smits, K. (2023). Impact of Water Management on Methane Emission Dynamics in Sri Lankan Paddy Ecosystems. Water, 15(21), 3715. https://doi.org/10.3390/w15213715
  • 10. Le Mer, J., & Roger, P. (2001). Production, oxidation, emission and consumption of methane by soils: A review. European Journal of Soil Biology, 37(1), 25–50. https://doi.org/10.1016/S1164-5563(01)01067-6
  • 11. Li, W., Ruiz-Menjivar, J., Zhang, L., & Zhang, J. (2021). Climate change perceptions and the adoption of low-carbon agricultural technologies: Evidence from rice production systems in the Yangtze River Basin. Science of The Total Environment, 759, 143554. https://doi.org/10.1016/j.scitotenv.2020.143554
  • 12. Liu, L., Ouyang, Z., Hu, C., & Li, J. (2024). Quantifying direct CO2 emissions from organic manure fertilizer and maize residual roots using 13C labeling technique: A field study. Science of The Total Environment, 906, 167603. https://doi.org/10.1016/j.scitotenv.2023.167603
  • 13. Nie, T., Huang, J., Zhang, Z., Chen, P., Li, T., & Dai, C. (2023). The inhibitory effect of a water-saving irrigation regime on CH4 emission in Mollisols under straw incorporation for 5 consecutive years. Agricultural Water Management, 278, 108163. https://doi.org/10.1016/j.agwat.2023.108163
  • 14. Pachauri, R. K., Mayer, L., & Intergovernmental Panel on Climate Change (Eds.). (2015). Climate change 2014: Synthesis report. Intergovernmental Panel on Climate Change.
  • 15. Shakoor, A., Shakoor, S., Rehman, A., Ashraf, F., Abdullah, M., Shahzad, S. M., Farooq, T. H., Ashraf, M., Manzoor, M. A., Altaf, M. M., & Altaf, M. A. (2021). Effect of animal manure, crop type, climate zone, and soil attributes on greenhouse gas emissions from agricultural soils—A global meta-analysis. Journal of Cleaner Production, 278, 124019. https://doi.org/10.1016/j.jclepro.2020.124019
  • 16. Smith, P., Soussana, J., Angers, D., Schipper, L., Chenu, C., Rasse, D. P., Batjes, N. H., Van Egmond, F., McNeill, S., Kuhnert, M., Arias‐Navarro, C., Olesen, J. E., Chirinda, N., Fornara, D., Wollenberg, E., Álvaro‐Fuentes, J., Sanz‐Cobena, A., & Klumpp, K. (2020). How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal. Global Change Biology, 26(1), 219–241. https://doi.org/10.1111/gcb.14815
  • 17. Takakai, F., Nakagawa, S., Sato, K., Kon, K., Sato, T., & Kaneta, Y. (2017). Net Greenhouse Gas Budget and Soil Carbon Storage in a Field with Paddy–Upland Rotation with Different History of Manure Application. Agriculture, 7(6), 49. https://doi.org/10.3390/agriculture7060049
  • 18. Wang, L., Yang, K., Gao, C., & Zhu, L. (2020). Effect and mechanism of biochar on CO2 and N2O emissions under different nitrogen fertilization gradient from an acidic soil. Science of The Total Environment, 747, 141265. https://doi.org/10.1016/j.scitotenv.2020.141265
  • 19. Wüst-Galley, C., Heller, S., Ammann, C., Paul, S., Doetterl, S., & Leifeld, J. (2023). Methane and nitrous oxide emissions from rice grown on organic soils in the temperate zone. Agriculture, Ecosystems & Environment, 356, 108641. https://doi.org/10.1016/j.agee.2023.108641
  • 20. Xu, Q., Dai, L., Zhou, Y., Dou, Z., Gao, W., Yuan, X., Gao, H., & Zhang, H. (2023). Effect of nitrogen application on greenhouse gas emissions and nitrogen uptake by plants in integrated rice-crayfish farming. Science of The Total Environment, 905, 167629. https://doi.org/10.1016/j.scitotenv.2023.167629
  • 21. Yang, S.-S., Lai, C.-M., Chang, H.-L., Chang, E.-H., & Wei, C.-B. (2009). Estimation of methane and nitrous oxide emissions from paddy fields in Taiwan. Renewable Energy, 34(8), 1916–1922. https://doi.org/10.1016/j.renene.2008.12.016
  • 22. Zhang, B., Tian, H., Ren, W., Tao, B., Lu, C., Yang, J., Banger, K., & Pan, S. (2016). Methane emissions from global rice fields: Magnitude, spatiotemporal patterns, and environmental controls. Global Biogeochemical Cycles, 30(9), 1246–1263. https://doi.org/10.1002/2016GB005381
  • 23. Zhu, K., Christel, W., Bruun, S., & Jensen, L. S. (2014). The different effects of applying fresh, composted or charred manure on soil N2O emissions. Soil Biology and Biochemistry, 74, 61–69. https://doi.org/10.1016/j.soilbio.2014.02.020
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4a59e9c8-c8f4-489a-8fbf-f7b28f1eaab5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.