PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Fracture toughness analysis of delamineted composites under variable temperatures

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main goal of the present paper is to approach the modeling of one of the most important and critical failure modes for composite laminates which is known as interlaminar delamination in the aeronautical structures. The analytical model is based on a fracture mechanics approach; it’s used to estimate the total mixed mode energy release rate for composite laminates. A finite element simulation has been achieved in combination with the virtual crack closure technique (VCCT) to analyze the effect of temperature on the interlaminar fracture toughness growth of a delaminated carbon/epoxy material, namely IM7/8552 subjected to mechanical loading at variable temperatures. The developed model may serve as the basis for treating different types of thermal and mechanical loading, different stacking sequences and thickness of lamina in order to build safe working conditions for composite laminates.
Rocznik
Strony
171--178
Opis fizyczny
Bibliogr. 20 poz., il. kolor., rys., wykr.
Twórcy
  • Modelling and Simulation of Mechanical Systems Laboratory Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco
  • Modelling and Simulation of Mechanical Systems Laboratory Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco
Bibliografia
  • [1] Dragan, K., Rašuo, B.: Review of impact damages modelling in laminated composite aircraft structures, Tehnicki vjesnik/Technical Gazette, 20, 3, 2013.
  • [2] Ronald Krueger.: A shell/3D modelling technique for delamination in composite laminates, In proceedings of the American society for composites, 14th technical conference, Technomic Publishing, 1999.
  • [3] Camanho, P. P., Dávila, C. G., de Moura, M. F. S. F.: Numerical Simulation of Mixed-Mode Progressive Delamination in Composite Materials, Journal of Composite Materials, 37, 16, 1415–1438, 2003.
  • [4] Turon, A., Camanho, P. P., Costa, J., Davila, C. G.: A Damage Model for the Simulation of Delamination in Advanced Composites Under Variable-Mode Loading, Mechanics of Materials, 38, 11, 1072–1089, 2006.
  • [5] Krueger, R., Minguet, P. J., O'Brien, T. K.: Implementation of interlaminar fracture mechanics in design: an overview, Presented at 14th international conference on composite materials (ICCM-14), San Diego, 2003.
  • [6] Wang, J. T., Raju, I. S.: Strain Energy Release Rate Formulae for Skin-Stiffener Debond Modeled with Plate Elements, Engineering Fracture Mechanics, 54, 2, 211– 228, 1996.
  • [7] Wang, J. T., Raju, I. S., Dávila, C. G., Sleight, D. W.: Computation of Strain Energy Release Rates for Skin-Stiffener Debonds Modeled with Plate Elements, 34th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics and Materials Conference, AIAA, Washington, D.C., 1680–1692, 1993.
  • [8] Rao, B. N. and Acharya, A. R.: Evaluation of fracture energy GIc using a double cantilever beam fiber composite specimen, Engineering Fracture Mechanics, 51, 317– 322, 1995.
  • [9] Alif, N., Carlsson, L. A., Gillespie, Jr., J. W.: Mode, I, mode II and mixed mode interlaminar fracture of woven fabric carbon/epoxy, ASTM STP, 1242, 82–106, 1997.
  • [10] Dattaguru, B., Everett, R. A., Whitcomb Jr., J. D., Johnson, W. S.: Geometrically nonlinear analysis of adhesively bonded joints, J. of Engineering Materials and Technology, 106, 59–65, 1996.
  • [11] Mangalgiri, P. D., Johnson, W. S.: Preliminary design of cracked lap shear specimen thickness for delamination of interlaminar fracture toughness,” J. of Composite Technology and Research, 8, 58–60, 1986.
  • [12] Benzeggagh, M. L., Kenane, M.: Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus, Compos. Sci. Technol., 49, 439–449, 1996.
  • [13] Standard Test Method for Mixed Mode I – Mode II Interlaminar Fracture Toughness of Unidirectional Fiber Reinforced polymer Matrix Composites. ASTM Standard D 6671-01, ASTM Annual Book of Standards, 15.03, 392–403, 2001.
  • [14] Rybicki, E. F., Kanninen, M. F.: A finite element calculation of stress intensity factors by modified crack closure integral, Engineering Fracture Mechanics, 9, 931– 938, 1977.
  • [15] Krueger, R.: Virtual crack closure technique: history, approach, and applications, ASME Appl. Mech. Rev., 57, 2, 109–43, 1977.
  • [16] ABAQUS v.6.10 documentation. [17] Camanho, P. P., Davila, C. G., Pinho, S. T., Iannucci, L., Robinson, P.: Prediction of in situ strengths and matrix cracking in composites under transverse tension and in-plane shear, Composites, Part A, 37, 165–176, 2006.
  • [18] ASTM D 5528-01.: Standard test method for mode I interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites, ASTM D 5528-01, American Society for Testing and Materials (ASTM), West Conshohocken, PA, USA.
  • [19] Blatt, D., Nicholas, T., Grant Jr., A. F.: Modelling the Crack Growth Rates of a Titanium Matrix Composite under Thermo mechanical Fatigue, ASTM STP, 1263, 352, 1996.
  • [20] Maimi, P., Camanho, P. P., Mayugo, J. A., Davila, C. G.: A continuum damage model for composite laminates: Part II – Computational implementation and validation, Mechanics of Materials, 39, 909–919, 2007.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4a59e8a5-7474-4460-b211-713cbd748cb6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.