PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Effect of hydraulic loading rate and vegetation on phytoremediation with artificial wetlands associated to natural swimming pools

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ obciążenia hydraulicznego i roślinności na fitoremediację w sztucznych mokradłach powiązanych z naturalnymi basenami pływackimi
Języki publikacji
EN
Abstrakty
EN
The treatment of pool water, whether for recreational or sporting purposes, by phytoremediation is widely applied. This work evaluates two artificial vertical flow wetlands, one on a real scale and the other on a laboratory scale, which have been planted with Typha domingensis, for the treatment of pool water in the climatic conditions of the city of Santiago de Cuba. When the hydraulic load applied to the real scale wetland was less than 0.25 m3∙m–2∙d–1, the levels of organic and microbiological contamination in the pool were below the maximum limits allowed by Cuban standards. At a laboratory scale, the presence of vegetation favoured the elimination of nitrogen compounds (nitrates and ammonium) and organic materials (BOD and COD). This behaviour is explained by the presence of processes of assimilation of organic compounds, or by the action of microorganisms associated with the rhizome of plants, which establish a symbiotic mechanism favourable to phytodepuration. The minimum concentration of ammonium obtained in outflow from the laboratory-scale reactor without vegetation reached a value of 2.15 mg∙m–3, which is within the limits allowed by the sanitary regulations.
PL
Fitoremediacja jest szeroko stosowana do oczyszczania wody w rekreacyjnych i sportowych basenach pływackich. W pracy oceniono dwa sztuczne mokradła: jeden w rzeczywistej skali i drugi w skali laboratoryjnej, które obsadzono Typha domingensis w celu oczyszczania wody w basenie w klimatycznych warunkach Santiago de Cuba. Kiedy obciążenie hydrauliczne układu w skali rzeczywistej było mniejsze od 0,25 m3∙m–2∙d–1, stężenie zanieczyszczeń organicznych i mikrobiologicznych było mniejsze niż maksymalne limity wyznaczone przez kubańskie normy. W skali laboratoryjnej obecność roślinności sprzyjała eliminowaniu związków azotowych (azotanów i jonów amonowych) oraz materii organicznej (BZT i ChZT). Taki efekt tłumaczy się występowaniem procesów asymilacji związków organicznych lub aktywnością mikroorganizmów powiązanych z kłączami roślin, które tworzą symbiotyczny system korzystny dla oczyszczania. Minimalne stężenie jonów amonowych mierzone na odpływie z laboratoryjnego reaktora bez roślinności wynosiło 2,15 mg∙dm–3; mieściło się więc w granicach dopuszczalnych przez normy sanitarne.
Wydawca
Rocznik
Tom
Strony
39--51
Opis fizyczny
Bibliogr. 70 poz., rys., tab.
Twórcy
  • University of Granma, Study Center for Applied Chemistry, Granma, Carr. Manzanillo, km 17, Peralejo, Bayamo, 85100 Bayamo, Cuba
  • University of Oriente, Department of Hydraulic Engineering, Santiago de Cuba, Cuba
  • Center for Molecular Immunology, Santiago de Cuba, Cuba
  • Polytechnic University of Madrid, Higher Technical School of Agronomic, Food and Biosystems Engineering, Spain
  • International SEK University, Faculty of Architecture and Engineering, Quito, Ecuador
  • International SEK University, Faculty of Architecture and Engineering, Quito, Ecuador
  • International SEK University, Faculty of Architecture and Engineering, Quito, Ecuador
Bibliografia
  • APHA 1995. Standard methods for examination of water and wastewater. 19th ed. Washington D.C., USA. American Public Health Association pp. 1193.
  • ARIAS C.A., DEL BUBBA M., BRIX H. 2001. Phosphorus removal by sands for use as media in subsurface flow constructed reed beds. Water Research. Vol. 35 p. 1159–1168. DOI 10.1016/S0043-1354(00)00368-7.
  • ARROYO P., SÁENZ DE MIERA L., ANSOLA G. 2015. Influence of environmental variables on the structure and composition of soil bacterial communities in natural and constructed wetlands. Science of the Total Environment. Vol. 506–507 p. 380–390. DOI 10.1016/j.scitotenv.2014.11.039.
  • AUSTIN D. 2006. Influence of cation exchange capacity (CEC) in a tidal flow, flood and drain wastewater treatment wetland. Ecological Engineering. Vol. 28 p. 35–43.
  • BADHE N., SAHA S., BISWAS R., NANDY T. 2014. Role of algal biofilm in improving the performance of free surface, up-flow constructed wetland. Bioresource Technology. Vol. 169 p. 596–604. DOI 10.1016/j.biortech.2014.07.050.
  • BERNINGER K., KOSKIAHO J., TATTARI S. 2012. Constructed wetlands in Finnish agricultural environments: balancing between effective water protection, multi-functionality and socio-economy. Journal of Water and Land Development. Vol. 17 p. 19–29. DOI 10.2478/v10025-012-0029-5.
  • BOERS A.M., VELTMAN R.L.D., ZEDLER J.B. 2007. Typha×glauca dominance and extended hydroperiod constrain restoration of wetland diversity. Ecological Engineering. Vol. 29 p. 232–244. DOI 10.1016/j.ecoleng.2006.04.011.
  • BRIX H., ARIAS C.A. 2005. Danish guidelines for small-scale constructed wetland system for onsite treatment of domestic sewage. Water Science and Technology. Vol. 51 p. 1–9. DOI 10.2166/wst.2005.0275.
  • CASANOVAS-MASSANA A., BLANCH A.R. 2013. Characterization of microbial populations associated with natural swimming pools. International Journal of Hygiene and Environmental Health. Vol. 216 p. 132–137. DOI 10.1016/j.ijheh.2012.04.002.
  • CDC 2001. Shigellosis outbreak associated with an unchlorinated fill-and-drain wading pool – Iowa, 2001. Centres for Disease Control and Prevention. Morbidity and Mortality Weekly Report. Vol. 50. No. 37 p. 797–800.
  • CDC 2004. An outbreak of norovirus gastroenteritis at a swimming club – Vermont, 2004. Centres for Disease Control and Prevention. Morbidity and Mortality Weekly Report. Vol. 53. No. 34 p. 793–795.
  • CHANTON J.P., WHITING G.J., HAPPELL J.D., GERARD G. 1993. Contrasting rates and diurnal patterns of methane emission from emergent aquatic macrophytes. Aquatic Botany. Vol. 46 p. 111–128. DOI 10.1016/0304-3770(93)90040-4.
  • CHOWDHURY S., ALHOOSHANI K., KARANFIL T. 2014. Disinfection byproducts in swimming pool: Occurrences, implications and future needs. Water Research. Vol. 53 p. 68–109. DOI 10.1016/j.watres.2014.01.017.
  • COLFORD J., WADE T.J., SCHIFF K.C., WRIGHT C.C., GRIFFITH J.F., SANDHU S.K. 2007. Water quality indicators and the risk of illness at beaches with nonpoint sources of fecal contamination. Epidemiology. Vol. 18 p. 27–35. DOI 10.1097/01.ede.0000249425.32990.b9.
  • COVENEY M.F., STITES D.L., LOWE E.F., BATTOE L.E., CONROW R. 2002. Nutrient removal from eutrophic lake by wetland filtration. Ecological Engineering. Vol. 19 p. 141–159. DOI 10.1016/S0925-8574(02)00037-X.
  • CRAUN G.F., BERGER P.S., CALDERON R.L. 1997. Coliform bacteria and waterborne disease outbreaks. Journal of American Water Works Association. Vol. 99 p. 96–104. DOI 10.1002/j.1551-8833.1997.tb08197.x.
  • CUI L., OUYANG Y., LOU Q., YANG F., CHEN Y., ZHU W., LUO S. 2010. Removal of nutrients from wastewater with Canna indica L. under different vertical-flow constructed wetland conditions. Ecological Engineering. Vol. 36 p. 1083–1088. DOI 10.1016/j.ecoleng.2010.04.026.
  • DEBUSK W.F. 1999. Wastewater treatment wetlands: Applications and treatment efficiency. Soil and Water Science Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences. SL 156 pp. 6.
  • DORDIO A.V., CARVALHO A.J.P. 2013. Organic xenobiotics removal in constructed wetlands, with emphasis on the importance of the support matrix. Journal of Harzadous Materials. Vol. 252–253 p. 272–292. DOI 10.1016/j.jhazmat.2013.03.008.
  • EID E.M., SHALTOUT K.H., ASAEDA T. 2012. Modeling growth dynamics of Typha domingensis (Pers.) Poir. ex Steud. in Lake Burullus, Egypt. Ecological Engineering. Vol. 243 p. 63–72. DOI 10.1016/j.ecolmodel.2012.05.028.
  • FAULWETTER J.L., GAGNON V., SUNDBERG C., CHAZARENC F., BURR M.D., BRISSON J., CAMPER A.K., STEIN O.R. 2009. Microbial processes influencing performance of treatment wetlands: A review. Ecological Engineering. Vol. 35 p. 987–1004. DOI 10.1016/j.ecoleng.2008.12.030.
  • FIORILLO L., ZUCKER M., SAWYER D., LIN A.N. 2001. The Pseudomonas hot-foot syndrome. The New England Journal of Medicine. Vol. 345 p. 335–338. DOI 10.1056/NEJM200108023450504.
  • FLORENTIN A., HAUTEMANIÈRE A., HARTEMANN P. 2011. Health effects of disinfection by-products in chlorinated swimming pools. International Journal of Hygiene and Environmental Health. Vol. 214 p. 461–469. DOI 10.1016/j.ijheh.2011.07.012.
  • GERALDES A.M., BOAVIDA M.J. 2004. How important are emergent macrophytes to crustacean zooplankton in a mesoeutrophic reservoir? Limnetica. Vol. 23 p. 57–64. DOI 10.1590/S2179-975X2013005000010.
  • GERALDES A.M., SCHWARZER C., SCHWARZER U. 2014. Piscinas biológicas e serviços ecossistémicos: Que relação? [Biological pools and ecosystem services: What relationship?] [online]. Ciência e ambiente para todos. Vol. 5 p. 27–36. [Access 14.04.2018]. Available at: http://revistas.ua.pt/index.php/captar/article/download/2968/2763.
  • GOMES M.V.T., SOUZA R.R.D., TELES V.S., MENDES É.A. 2013. Phytoremediation of water contaminated with mercury using Typha domingensis in constructed wetland. Chemosphere. Vol. 103 p. 228–233. DOI 10.1016/j.chemosphere.2013.11.071.
  • GONZÁLEZ O. 2000. Estudio del comportamiento de humedales con flujo subsuperficial horizontal en el tratamiento de aguas residuales [Study of the behaviour of wetlands with horizontal subsurface flow for wastewater treatment]. PhD Thesis. La Habana. CUJAE pp. 120.
  • GONZÁLEZ O. 2006. Remoción de nitrógeno y fósforo en humedales con flujo subsuperficial horizontal [Nitrogen and phosphorus removal in wetlands with horizontal subsurface flow]. Ingeniería Hidráulica y Ambiental. Vol. 17 p. 26–31. DOI 10.4067/S0718-07642015000600011.
  • GROSS M.F., HARDISKY M.A., WOLF P.L., KLEMAS V. 1993. Relationships among Typha biomass, pore water methane, and reflectance in a Delaware (USA) brackish marsh. Journal of Coastal Research. Vol. 9 p. 339–355.
  • GUITTONNY-PHILIPPE A., MASOTTI V., HÖHENER P., BOUDENNE J.-L., VIGLIONE J., LAFFONT-SCHWOB I. 2014. Constructed wetlands to reduce metal pollution from industrial catchments in aquatic Mediterranean ecosystems: A review to overcome obstacles and suggest potential solutions. Environment International. Vol. 64 p. 1–16. DOI 10.1016/j.envint.2013. 11.016.
  • HARRINGTON C, SCHOLZ M. 2010. Assessment of pre-digested piggery wastewater treatment operations with surface flow integrated constructed wetland systems. Bioresource Technology. Vol. 101 p. 7713–7723. DOI 10.1016/j.biortech. 2010.03.147.
  • HEGAZY A.K., ABDEL-GHANI N.T., EL-CHAGHABY G.A. 2011. Phytoremediation of industrial wastewater potentiality by Typha domingensis. International Journal of Environmental Science and Technology. Vol. 8 p. 639–648.
  • HILDEBRAND J.M., MAGUIRE H.C., HOLLIMAN R.E., KANGESU E. 1996. An outbreak of Escherichia coli O157:H7 infection linked to paddling pools. Communicable disease report. CDR review. Vol. 6 p. 33–36.
  • JÓŹWIAKOWSKI K. 2017. Efficiency of organic substance removal in a hybrid sand filter with horizontal flow. Journal of Water and Land Development. Vol. 35 p. 95–100. DOI 10.1515/jwld-2017-0072.
  • KNOWLES P., DOTROB G., NIVALA J., GARCIA J. 2011. Clogging in subsurface-flow treatment wetlands: occurrence and contributing factors. Ecological Engineering. Vol. 37 p. 99–112. DOI 10.1016/j.ecoleng.2010.08.005.
  • KOUKIA S., M’HIRIB F., SAIDIA N., BELAÏDB S., HASSENA A. 2009. Performances of a constructed wetland treating domestic wastewaters during a macrophytes life cycle. Desalination. Vol. 246 p. 452–467. DOI 10.1016/j.desal.2008.03.067.
  • KRAMER M.H., HERWALDT B.L., CRAUN G.F., CALDERON R.L, JURANEK D.D. 1996. Surveillance for waterborne-disease outbreaks – United States, 1993–1994. Morbidity and Mortality Weekly Report. Vol. 45. No. 1 p. 1–33.
  • LEVY D.A., BENS M.S., CRAUN G.F., CALDERON R.L., HERWALDT B.L. 1998. Surveillance for waterborne-disease outbreaks – United States, 1995–1996. Morbidity and Mortality Weekly Report. Vol. 47. No. SS-5 p. 1–34.
  • LI J., WEN Y., ZHOU Q., XINGJIE Z., LI X., YANG S., LIN T. 2008. Influence of vegetation and substrate on the removal and transformation of dissolved organic matter in horizontal sub-surface-flow constructed wetlands. Bioresource Technology. Vol. 99 p. 4990–4996. DOI 10.1016/j.biortech.2007.09. 012.
  • MARION J.W., LEE J., LEMESHOW S., BUCKLEY T.J. 2010. Association of gastrointestinal illness and recreational water exposure at an inland U.S. beach. Water Research. Vol. 44 p. 4796–4804. DOI 10.1016/j.watres.2010.07.065.
  • MCCRADY M.H. 1915. The numerical interpretation of fermentation-tube. The Journal of Infectious Diseases. Vol. 17. No. 1 p. 183–212.
  • MIODUSZEWSKI W. 2014. Small (natural) water retention in rural areas. Journal of Water and Land Development. Vol. 20 p. 19–29. DOI 10.2478/jwld-2014-0005.
  • NC-22 1999. Lugares de baño en costas y en masas de aguas interiores. Requisitos higiénico sanitarios [Places of bath at coasts and on masses of interior waters. Hygienic sanitary requirements]. La Habana. Oficina Nacional de Normalización pp. 10.
  • NC-441. 2006. Salud ambiental Piscinas requisitos higiénico sanitarios y de seguridad [Environmental health – Swimming pools – Safety and sanitary hygienic requirements]. La Habana. Oficina Nacional de Normalización pp. 22.
  • NEWMAN S., GRACE J.B., KOEBEL J.W. 1996. Effects of nutrient and hydroperiod on Typha, Cladium and Eleocharis: Implications for everglades restoration. Ecological Applications. Vol. 6 p. 774–783. DOI 10.2307/2269482.
  • POND K. 2005. Water recreation and disease. Plausibility of associated infections: Acute effects, sequelae and mortality. London. WHO. ISBN 1843390663 pp. 239.
  • RICHARDSON S.D. 2010. Environmental mass Spectrometry: emerging contaminants and current issues. Analytical Chemical. Vol. 82 p. 4742–4774. DOI 10.1021/ac202903d.
  • RICHARDSON S.D., DEMARINI D.M., KOGEVINAS M., FERNANDEZ P., MARCO E., LOURENCETTI C., BaLlesté C., HEEDERIK D., MELIEFSTE K., MCKAGUE AB. 2010. What's in the pool? A comprehensive identification of disinfection by-products and assessment of mutagenicity of chlorinated and brominated swimming poolwater. Environmental health perspectives. Vol. 118 p. 1523–1530. DOI 10.1289/ehp.1001965.
  • SAEED T., SUN G. 2012. A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: dependency on environmental parameters, operating conditions and supporting media. Journal of Environmental Management. Vol. 112 p. 429–448. DOI 10.1016/j.jenvman.2012.08.011.
  • SAEED T., SUN G. 2013. A lab-scale study of constructed wetlands with sugarcane bagasse and sand media for the treatment of textile wastewater. Bioresource Technology. Vol. 128 p. 438–447. DOI 10.1016/j.biortech.2012.10.052.
  • SCHRODER P., NEUSTIFTER J., PEIS S., HUBER B. 2003. Perspectives for the use of cattail (Typha spp.) in phytoremediation. In: Crop Science and Technology. Proceedings of the International Congress (BCPC). Glasgow. British Crop Production Council p. 405–412.
  • SHARMA P., ASAEDA T., MANATUNGE J., FujiNo T. 2006. Nutrient cycling in a natural stand of Typha angustifolia. Journal of Freshwater Ecology. Vol. 21 p. 431–438. DOI 10.1080/02705060.2006.9665020
  • SINCLAIR R.G., JONES E.L., GERBA C.P. 2009. Viruses in recreational water-borne disease outbreaks: a review. Journal of Applied Microbiology. Vol. 107 p. 1769–1780. DOI 10.1111/j.1365-2672.2009.04367.x.
  • SKRZYPIEC K., GAJEWSKA M. 2017. The use of constructed wetlands for the treatment of industrial wastewater. Journal of Water and Land Development. Vol. 34 p. 233–240. DOI 10.1515/jwld-2017-0058.
  • SULTANA M.-Y., AKRATOS C.S., PAVLOU S., VAYENAS D.V. 2014. Chromium removal in constructed wetlands: A review. International Biodeterioration and Biodegradation. Vol. 96 p. 181–190. DOI 10.1016/j.ibiod.2014.08.009.
  • TEO T.L.L., COLEMAN H.M., KHAN S.J. 2015. Chemical contaminants in swimming pools: Occurrence, implications and control. Environment International. Vol. 76 p. 16–31. DOI 10.1016/j.envint.2014.11.012.
  • TIRODIMOS I., ARVANITIDOU M., DARDAVESSIS L., BISIKLIS A., ALEXIOU-DANIIL S. 2010. Prevalence and antibiotic resistance of Pseudomonas aeruginosa isolated from swimming pools in northern Greece. Eastern Mediterranean Health Journal. Vol. 16 p. 783–787.
  • USEPA 2000. Design manual constructed wetlands for municipal wastewater treatment. U.S. Environmental Protection Agency (USEPA), Cincinnati, Ohio, USA pp. 166.
  • VYMAZAL J. 2007. Removal of nutrients in various types of constructed wetlands. Science of the Total Environment. Vol. 380 p. 48–65. DOI 10.1016/j.scitotenv.2006.09.014.
  • VYMAZAL J. 2011. Constructed wetlands for wastewater treatment: five decades of experience. Environmental Science and Technology. Vol. 45 p. 61–69. DOI 10.1021/es101403q.
  • VYMAZAL J. 2013. Emergent plants used in free water surface constructed wetlands: A review. Ecological Engineering. Vol. 61 p. 582–592. DOI 10.1016/j.ecoleng.2013.06.023.
  • VYMAZAL J. 2014. Constructed wetlands for treatment of industrial wastewaters: A review. Ecological Engineering. Vol. 73 p. 724–751. DOI 10.1016/j.ecoleng.2014.09.034.
  • WADE T.J., CALDERON R.L., SAMS E., BEACH M., BRENNER K.P., WILLIAMS A.H., DUFOUR A.P. 2006. Rapidly measured indicators of recreational water quality are predictive of swimming- associated gastrointestinal illness. Environmental Healt Perspectives. Vol. 114 p. 24–28. DOI 10.1289/ehp. 8273.
  • WHO 2006. Microbial hazards. Chapt. 3. In: Guidelines for safe recreational water environments. swimming pools and similar environment. Vol. 2. Geneva. WHO Press p. 26–59.
  • WU H., ZHANG J., NGO H.H., GUO W., HU Z., LIANG S., FAN J., LIU H. 2015. A review on the sustainability of constructed wetlands for wastewater treatment: Design and operation. Bioresource Technology. Vol. 175 p. 594–601. DOI 10.1016/j.biortech.2014.10.068.
  • WU S., KUSCHK P., BRIX H., VYMAZAL J., DONG R. 2014. Development of constructed wetlands in performance intensifications for wastewater treatment: A nitrogen and organic matter targeted review. Water Research. Vol. 57C p. 40–55. DOI 10.1016/j.watres.2014.03.020.
  • YALCUK A., UGURLU A. 2009. Comparison of horizontal and vertical constructed wetland systems for landfill leachate treatment. Bioresource Technology. Vol. 100 p. 2521–2526. DOI 10.1016/j.biortech.2008.11.029.
  • YANG L., SCHMALZ C., ZHOU J., ZWIENER C., CHANG V.W.-C., GE L., WAN M.P. 2016. An insight of disinfection by-product (DBP) formation by alternative disinfectants for swimming pool disinfection under tropical conditions. Water Research. Vol. 101 p. 535–546. DOI 10.1016/j.watres.2016.05.088.
  • YODER J.S., BLACKBURN B.G., CRAUN G.F., HILL V., LEVY D.A., CHEN N., LEE S.H., CALDERON R.L., BEACH M.J. 2004. Surveillance for waterborne-disease outbreaks associated with recreational water – United States, 2001–2002. Morbidity and mortality weekly report. Surveillance summaries. Vol. 53. No. 8 p. 1–22.
  • ZWIENER C., RICHARDSON S.D., DE MARINI D.M., GRUMMT T., GLAUNER T., FRIMMEL F.H. 2007. Drowning in disinfection byproducts? Assessing swimming pool water. Environmental Science and Technology. Vol. 41 p. 363–372. DOI 10.1021/es062367v.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4a563424-e91f-44eb-ad44-535dcc2d62e0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.