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quality, general efficiency, and the complexity of operating systems, transmission, and engine 
speeds compared to marine diesel piston engines. At the moment an additional criterion for 
assessing the applicability of drive systems is the emission of pollutants into the atmosphere, 
which shows some benefits in using a turbine engine [3, 4, 5, 6]. These benefits arise from a 
different process of fuel combustion in the engine, other type of fuel used to power the engine, and 
the type of energy and the energy demand of the watercraft.  

Operation of most water vessels is characterized by established work parameters of the drive 
system and the motor. Development of time density characteristics of operating parameters and 
determining of the environmental performance characteristics in the engine operating range will 
allow for the assessment of the ecology of the drive system in that operating range. The correlation 
of operating parameters of the drive with the concentration content of harmful substances in the 
exhaust gases is important for work in this field. Of particular importance in this work is the 
methodology of measuring pollutant emissions. The problem with implementation of the 
measurement of the concentration of harmful substances in the exhaust gases for turbine engines 
lies with the exhaust gas sampling methods [7]. The exhaust gas discharged from the engine is 
characterized by a high flow velocity and a large mass of flowing exhaust gas. Therefore, it 
becomes necessary to use methods of analytical assessment for the emission measurement, with 
the use of selected operating and ecological parameters. The knowledge of mutual correlation of 
selected parameters is useful when using this method. 

 
2. Measurement methodology of environmental parameters  

 
2.1.  Research of GTM 120 turbine jet engine 
 
The methodology of measuring emissions from gas turbine engines involves measuring the 

concentration of impurities contained in the sample retrieved from the stream of exhaust gases 
flowing through a special probe. The provisions of ICAO – Annex 16 [8] does not define the 
physical parameters of the probe, but does define the general guidelines. The probe in contact with 
the sample exhaust gas must be made of stainless steel or other non-reacting material. If a multi-
hole probe is used, all holes must be of the same diameter. The probe design must be such that at 
least 80% of the pressure acting on the probe was drawn in through the holes. The number of fume 
sampling sites cannot be less than 12. The plane of sampling must be located as close to the plane 
of the engine exhaust, as allowed by the engine performance but in any case it must be at a 
distance of less than 0.5 of the nozzle diameter. The legislation includes the requirement to prove 
to the certifying authorities that the proposed design of the probe and its placement helps ensure 
obtaining a representative sample for each specific engine thrust settings. 

Using a multi-hole probe for measuring the engine exhaust emissions results in obtaining an 
average exhaust sample. Averaging the collected gas sample is related to the fact that with 
increasing distance from the axis of the gas stream leaving the exhaust the concentration of 
exhaust gas components is reduced. This effect depends on the type of construction of the engine, 
including the method for cooling and separation of engine components from the hot gas as well as 
the associated turbulence in the stream of exhaust gases. The exhaust gas sampled by the probe’s 
several holes with different concentrations of impurities is mixed together, which in turn leads to 
the averaged value of the concentration of pollutants in the exhaust gas [1, 2]. Therefore, it is 
desirable to measure the concentration of pollutants in the exhaust gas in an area where the gases 
are not mixed with the air cooling engine parts, or the air captured by the swirling stream leaving 
the exhaust gas. Using such a measurement the actual composition of the exhaust gases can be 
estimated, and using additional information – the mass of flowing exhaust and hourly emissions of 
pollutants contained in it can be determined. 
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gases. Given that total and complete burning of one kilogram of fuel requires around 14.2 kg of 
air, the following relationship can be established:  

 

   







h

kg
2.14λ1fexh mm , (2) 

 
Using this dependence the exhaust gas mass flow values were obtained. The results derived on 

the basis of calculations were compared to the values of exhaust gas mass flow obtained during 
measurements (Fig. 6). The comparison was made by calculating the percentage difference in the 
value relative to the measurement results for each value of thrust. A comparison of the exhaust gas 
mass flow values obtained during the performed tests with the values derived on the basis of 
calculations, indicates that the calculated values of exhaust gas streams are similar to values 
obtained from measurements. A characteristic feature of the tested engine is an almost linear 
relation of the exhaust mass flow as a function of thrust, which is closely related to the values of 
fuel consumption. 

 

 
Fig. 4. The values of hourly fuel consumption as a function of engine thrust for GTM 120 

 

 
Fig. 5. The values of the air-fuel ratio in the exhaust gas as a function of engine thrust for GTM 120 
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Fig. 6. Comparison of the measured and calculated engine exhaust mass flow for GTM 120 

 
The levels of toxic compounds in the exhaust gases (Fig. 7–10) were measured during the 

study. The concentration of toxic compounds in the exhaust gases is highly dependent on the 
combustion process in the combustion chamber of the turbine engine, which depends on the 
engine load or the need for a specific thrust. For the obtained emission results the trend lines in the 
form of second degree polynomial equations have been drawn, which accurately describe the 
relation between the values of concentrations of harmful compounds and the GTM 120 engine 
thrust.  

 

 
Fig. 7. Values for concentration of carbon monoxide in the exhaust gas as a function of engine thrust for GTM 120 

 

 
Fig. 8. Values for concentration of hydrocarbons in the exhaust gas as a function of engine thrust for GTM 120 
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Fig. 9. Values for concentration of nitrogen oxides in the exhaust gas as a function of engine thrust for GTM 120 

 

 
Fig. 10. Values for concentration of carbon dioxide in the exhaust gas as a function of engine thrust for GTM 120 

 
3.2. Test results for GTD 350 engine 
 
Similar studies were carried out for the GTD 350 turboshaft engine, which led to the values of 

the measured parameters as a function of load in the form of torque at the output of the engine 
transmission and power generated by the engine. Hourly fuel consumption (Fig. 11), the 
concentration of toxic compounds in the exhaust gases (Fig. 12–14), and the oxygen concentration 
(Fig. 15) were measured. As before, trend lines described by second degree polynomial equations 
were determined for the obtained distribution values. 

 

 
Fig. 11. The values of hourly fuel consumption as a function of engine power output for GTD 350  
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Fig. 12. Values for concentration of carbon monoxide in the exhaust gas as a function of engine power output 

 for GTD 350 
 

 
Fig. 13. Values for concentration of nitrogen oxides in the exhaust gas as a function of engine power output 

 for GTD 350 
 

 
Fig. 14. Values for concentration of carbon dioxide in the exhaust gas as a function of engine power output  

for GTD 350 
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Fig. 15. Values for concentration of oxygen in the exhaust gas as a function of engine power output for GTD 350 
 

4. Analysis of the test results 
 
Knowing the characteristics of the concentration of individual compounds as a function of 

thrust, or the load of the engine and the equation that relates them, and by adding to that the 
information on fuel consumption and air-fuel ratio or oxygen concentration, one could estimate the 
instantaneous value of the turbine engine emissions in actual operating conditions. It should be 
emphasized, however, that knowing the value of air-fuel ratio or oxygen concentration in the 
exhaust gas is essential. An overall evaluation of the combustion parameters may be performed on 
the basis of the air-fuel ratio contained in the exhaust gas or on the basis of the oxygen 
concentration in the exhaust gas (Fig. 16). This is confirmed by the interdependence between these 
parameters (Fig. 17). Their relation can be described with a trend line with a high coefficient of 
determination R2 = 0.95. The resulting function can be used to evaluate the air-fuel ratio in the 
exhaust gas based on the measured value of the oxygen concentration. This analysis can be used 
when the exhaust gas analyzer of the gas composition does not have the option to measure the  
air-fuel ratio but does measure the oxygen concentration of the exhaust has. 

 

 
Fig. 16. Values for concentration of oxygen in the exhaust gas as a function of engine thrust for GTM 120  
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Fig. 17. Values of air-fuel ratio as a function of oxygen concentration in the exhaust gas stream of the GTM 120  
 
The resulting relation of the air-fuel ratio as a function of the concentration of oxygen in the 

exhaust gas of a turbine engine was revised and verified for a greater number of measurement 
points (Fig. 18) and the results confirm that relation.  

 

 
Fig. 18. The relation of the value of the air-fuel ratio as a function of oxygen concentration in the exhaust gas of a 

turbine engine 
 
Finding of the value of air-fuel is necessary to determine the exhaust gas mass flow in 

accordance with the earlier equation (2). Complementing that equation with the functional relation 
of the air-fuel ratio and engine load, the mass flow of exhaust gas is obtained as a function of load 
(3). Similarly using functional relation changes, of the concentration of harmful substances in 
relation to the load, a relation of the emission of the compound as a function of thrust and engine 
load can be established (4). 
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kg
2.14λ1 FmFm fexh , (3) 
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where: 
ai – emission factor of the i-th compound, 
Ei – emission of the i-th compound, 
ci – concentration of the i-th compound in the exhaust gas, 
F – engine thrust or load. 
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When the measurement results of the oxygen concentration in the exhaust are available and the 
functional relation of changes in oxygen concentration as a function of load is known, the relation 
(3) takes the form (5), in which the value of lambda is a functional relation of the oxygen 
concentration λ(F) = f(cO2(F)).  
 

      







h

kg
2.141

2O FcfmFm fexh ,    (5) 

 
Introducing the exhaust gas mass flow equation (5), which is a function dependent on the 

engine load including the functional character of individual elements of the equation, to equation 
(4), values of emission of pollutants by the turbine engine at different operating points (Fig. 19) 
were determined. The emission values of the individual harmful compounds obtained through 
estimation are characterized by a similar distribution as the values obtained from the 
measurements. Relative differences in most operating points reach up to 15% (Fig. 20). The 
exception is the emission corresponding to the operating point with the engine thrust of 80 N, 
where the percentage differences of the results obtained through estimates are largest at around 
25–35%. This situation could indicate possible measurement inaccuracies during testing at this 
operating point. The percentage comparisons of the results of estimating emissions based on the 
existing relations to the results obtained in experimental research indicates the possibility of using 
a simplified method for estimating exhaust emissions based on the known set of concentrations of 
individual compounds relative to the engine load.  

A similar analysis was done for the testing of emissions in real operating conditions for the 
GTD 350 engine. 



a) 

 
b) 

 
c) 

 
d) 

 
Fig. 19. Results comparison of the emission of individual harmful compounds in the engine exhaust of GTM 120 

obtained from real measurement and the outcome of the estimates: a) carbon monoxide, b) hydrocarbons, c) nitrogen 
oxides, d) carbon dioxide 
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Fig. 20. The relative difference (as percentage) of the emissions of individual harmful compounds in the engine 

exhaust of GTM 120 derived from real measurement and the outcome of the estimates 
 
In accordance with the procedure outlined above, values of emissions in the GTD 350 engine 

exhaust for individual operating points have been determined. Also, the estimation of emissions 
using the functional relations resulting from the distribution of concentration values as a function 
of engine load was performed. The resulting values of emission obtained in two ways were then 
compared (Fig. 21). Again, the obtained emission values for each of the harmful compounds 
measured exhibit a similar distribution. 

 
a)  b) 

   
c) 

 
Fig. 21. Results comparison of the emission of individual harmful compounds in the engine exhaust of GTD 350 

obtained from real measurement and the outcome of the estimates: a) carbon monoxide, a) nitrogen oxide, c) carbon 
dioxide 

 
The comparison of the obtained values indicates that the relative differences for most operating 

points did not exceed 5%. An exception is the comparison of the relative values of CO2 emissions, 
which achieved a difference of 15% and 20% for points at high load (Fig. 22). The resulting 
situation requires broadening the scope of research to other operating points at a higher engine 
load. 
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Fig. 22. The relative difference (as percentage) of the emissions of individual harmful compounds in the engine 

exhaust of GTD 350 derived from real measurement and the outcome of the estimates 

 
5. Conclusions 
 

Conducted analysis of research results of jet engine operating parameters, for turbine and 
turboshaft engines, aimed at assessing the methodology for estimating emissions in the exhaust gas 
based on the functional relations between the concentration of individual compounds and the 
engine load, point to the viability of the proposed method. This is indicated by the relative 
percentage differences in compared emission values obtained. These do not exceed 15% for most 
of the compared values. The exceptions are some values where these differences amount to 15–
35%, but the nature of occurrence of such values indicates that they are most likely the result of a 
measurement error, which needs to be identified. The obtained results of the conducted analysis 
indicate that the method for estimating emissions in the exhaust gas based on existing functional 
relations between the emission parameters and the operating parameters, such as the engine load, 
can be a tool used in the evaluation of pollutant emissions from gas turbine engines during their 
operation. 
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