PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Optimization of Distributed Multi-Node, Multi-GPU, Heterogeneous System for 3D Image Reconstruction in Electrical Capacitance Tomography

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Electrical Capacitance Tomography is a non-invasive imaging technique, which allows visualization of the industrial processes interior and can be applied to many branches of the industry. Image reconstruction process, especially in case of 3D images, is a very time consuming task (when using classic processors and algorithms), which in turn leads to an unacceptable waiting time and currently limits the use of 3D Electrical Capacitance Tomography. Reconstruction using deterministic methods requires execution of many basic operations of linear algebra, such as matrix transposition, multiplication, addition and subtraction. In order to reach real-time reconstruction a 3D ECT computational subsystem must be able to transform capacitance data into images in a fraction of a second. By assuming, that many of the computations can be performed in parallel using modern, fast graphics processor and by altering the algorithms, time to achieve high quality image reconstruction will be shortened significantly. The research conducted while analysing ECT algorithms has also shown that, although dynamic development of GPU computational capabilities and its recent application for image reconstruction in ECT has significantly improved calculations time, in modern systems a single GPU is not enough to perform many tasks. Distributed Multi-GPU solutions can reduce reconstruction time to only a fraction of what was possible on pure CPU systems. Nevertheless performed tests clearly illustrate the need for further optimizations of previously developed algorithms.
Twórcy
  • Instytut Informatyki Stosowanej
autor
  • Instytut Informatyki Stosowanej
  • Instytut Informatyki Stosowanej
autor
  • Instytut Informatyki Stosowanej
Bibliografia
  • [1] Banasiak, R., Wajman, R., Chaniecki, Z., Grudzień, K., Romanowski, A., Betiuk, J. (2008). Wizualizacja 4D ECT w czasie rzeczywistym przemysłowych procesów przepływu grawitacyjnego materiałów sypkich. Automatyka/Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie, 12, 863-869.
  • [2] Banasiak, R., Wajman, R., Soleimani, M. (2008). System tomografu pojemnościowego do nieinwazyjnej trójwymiarowej wizualizacji czasu rzeczywistego. Automatyka/Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie, 12, 871-877
  • [3] Banasiak, R., Wajman, R., Fidos, H., Jaworski, T., Fiderek, P., Kapusta, P., Majchrowicz, M., Sankowski, D. (2013). Fusion of three-dimensional electrical capacitance tomography and fuzzy logic inference for phases fraction and flow structures identification in horizontal and vertical gas-liquid flow pipelines. 7th World Congress on Industrial Process Tomography, Kraków, pp. 818–827, 2013
  • [4] Cui, Z., Wang, H., Yang, C., Zhang, D., Geng, Y. (2012, July). Development and application of ECT digital system for online flow measurement. In Imaging Systems and Techniques (IST), 2012 IEEE International Conference on (pp. 599-604). IEEE
  • [5] Garbaa, H., Jackowska-Strumillo, L., Grudzien, K., Romanowski, A. (2014, September). Neural network approach to ECT inverse problem solving for estimation of gravitational solids flow. In Computer Science and Information Systems (FedCSIS), 2014 Federated Conference on (pp. 19-26). IEEE
  • [6] Shavit, N., Herlihy, M. (2008). The Art of Multiprocessor Programming. San Francisco, Morgan Kaufmann
  • [7] Kapusta, P., Majchrowicz, M. (2010). Combining parallel and distributed computing on heterogeneous systems to accelerate image reconstruction in Electrical Capacitance Tomography, III International Interdisciplinary Technical Conference Of Young Scientists, Polska
  • [8] Kapusta, P., Majchrowicz, M., Banasiak, R. (2010). Applying parallel and distributed computing for image reconstruction in 3D electrical capacitance tomography. Automatyka/Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie, 14, 711-722
  • [9] Kirk, D. B. (2010). W. mei w. hwu. Programming Massively Parallel Processors: A Hands-on Approach, 30
  • [10] Kitowski, J., Turlała, M., Wiatr, K., Dutka Ł. (2012). PLGRID: Foundations and perspectives of national computing infrastructure. Lecture Notes in Computer Science, Volume 7136 LNCS pp. 1-14. Springer Berlin Heidelberg
  • [11] Kshemkalyani, A. D., Singhal, M. (2011). Distributed computing: principles, algorithms, and systems. Cambridge University Press
  • [12] Majchrowicz, M., Kapusta, P., Sankowski, D. (2010). Accelerating image reconstruction in Electrical Capacitance Tomography using OpenCL technology in heterogeneous systems. In XVII International Conference on Information Technology Systems. Theory, Design, Implementations, Applications
  • [13] Majchrowicz, M., Kapusta, P. (2011). Accelerating Image reconstruction algorithms in Electrical Capacitance Tomography using Multi-GPU system. Advanced Numerical Modelling, pp. 47-49
  • [14] Majchrowicz, M., Kapusta, P., Jackowska-Strumiłło, L (2013). Analysis of application of distributed multi-node, multi-GPU heterogeneous system for acceleration of image reconstruction in Electrical Capacitance Tomography. Image Processing & Communication, 18(2-3), 109-118
  • [15] Majchrowicz, M., Kapusta, P., Jackowska-Strumiłło, L., Sankowski, D. (2015). Analysis of application of distributed multi-node, multi-GPU heterogeneous system for acceleration of image reconstruction in Electrical Capacitance Tomography. Image Processing & Communications, 20(3), 5-14
  • [16] Romanowski, A., Grudzien, K., Banasiak, R., Williams, R. A., Sankowski, D. (2006). Hopper flow measurement data visualization: Developments towards 3D. In Proc. of 5th World Congress on Industrial Process Tomography
  • [17] Russek, P., Wiatr, K. (2007, April). Dedicated architecture for double precision matrix multiplication in supercomputing environment. In Design and Diagnostics of Electronic Circuits and Systems, 2007. DDECS’07. IEEE (pp. 1-4). IEEE
  • [18] Sankowski, D., Grudzień, K., Chaniecki, Z., Banasiak, R., Wajman, R., Romanowski, A. (2010). Process tomograhy development at Technical University of Lodz. Electrical Capacitance Tomography Theoretical Basis and Applications, edited by Dominik Sankowski and Jan Sikora, Warszawa, pp. 70-95
  • [19] Soleimani, M. (2006). Three-dimensional electrical capacitance tomography imaging. Insight-Non-Destructive Testing and Condition Monitoring, 48(10), 613-617
  • [20] Soleimani, M., Mitchell, C. N., Banasiak, R., Wajman, R., Adler, A. (2009). Four-dimensional electrical capacitance tomography imaging using experimental data. Progress In Electromagnetics Research, 90, 171-186
  • [21] Wajman, R., Banasiak, R., Mazurkiewicz, L., Dyakowski, T., Sankowski, D. (2006). Spatial imaging with 3D capacitance measurements. Measurement Science and Technology, 17(8), 2113
  • [22] Wajman, R. (2008). New image reconstruction method for capacitance process tomography. Zeszyty Naukowe. Elektryka/Politechnika Łódzka, (113), 107-113
  • [23] White, K. M. (2007). Apple Training Series: Mac OS X Support Essentials. Peachpit Press
  • [24] Yang, W. Q., Peng, L. (2002). Image reconstruction algorithms for electrical capacitance tomography. Measurement science and technology, 14(1), R1
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4a504036-0e43-4791-b883-2f1863bbb5b7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.