PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Influence of Carbon Content on Austenite Stability and Strain-induced Transformation of Nanocrystalline FeNiC Alloy by Spark Plasma Sintering

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effects of carbon content on the austenite stability and strain-induced transformation of nanocrystalline Fe-11%Ni alloys were investigated using X-ray analysis and mechanical tests. The nanocrystalline FeNiC alloy samples were rapidly fabricated using spark plasma sintering because of the extremely short densification time, which not only helped attain the theoretical density value but also prevented grain growth. The increased austenite stability resulted from nanosized crystallites in the sintered alloys. Increasing compressive deformation increased the volume fraction of strain-induced martensite from austenite decomposition. The kinetics of the strain-induced martensite formation were evaluated using an empirical equation considering the austenite stability factor. As the carbon content increased, the austenite stability was enhanced, contributing to not only a higher volume fraction of austenite after sintering, but also to the suppression of its strain-induced martensite transformation.
Twórcy
autor
  • Chonbuk National University, Division of Advanced Materials Engineering, 567 Baekje-Daero, Deokjin-gu, Jeonju, 54896, Republic of Korea
  • Korea Polytechnic University, Siheung, Republic of Korea
autor
  • Korea Polytechnic University, Siheung, Republic of Korea
autor
  • Chonbuk National University, Division of Advanced Materials Engineering, 567 Baekje-Daero, Deokjin-gu, Jeonju, 54896, Republic of Korea
autor
  • Chonbuk National University, Division of Advanced Materials Engineering, 567 Baekje-Daero, Deokjin-gu, Jeonju, 54896, Republic of Korea
Bibliografia
  • [1] S. Lee, S. J. Lee, S. S. Kumar, K. Lee, B. C. De Cooman, Metall. Mater. Trans. A. 42A, 3638 (2011).
  • [2] J. M. Torralba, A. Navarro, M. Campos, Mater. Sci. Eng. A. 573, 253 (2013).
  • [3] G. Frommeyer, U. Brux, P. Neumann, ISIJ Int. 43, 438 (2003).
  • [4] Y. Sakuma, O. Matsumura, H. Takechi, Metall. Trans. A. 22A, 489 (1991).
  • [5] G. N. Haidemenopoulos, A. T. Kermanidis, C. Malliaros, H. H. Dickert, P. Kucharzyk, W. Bleck, Mater. Sci. Eng. A. 573, 7 (2013).
  • [6] S. J. Lee, S. Lee, B. C. De Cooman, Int. J. Mater. Res. 104, 423 (2013).
  • [7] Y. Matsuoka, T. Iwasaki, N. Nakada, T. Tsuchiyama, S. Takaki, ISIJ Int. 53, 1224 (2013).
  • [8] C. Suryanarayana, Prog. Mater Sci. 46, 1 (2001).
  • [9] C. Keller, K. Tabalaiev, G. Marnier, J. Noudem, X. Sauvage, E. Hug, Mater. Sci. Eng. A. 665, 125 (2016).
  • [10] W. Ju, Y. D. Kim, J. J. Sim, S. H. Choi, S. K. Hyun, K. M. Lim, K. T. Park, J. Korean Powder Metall. 24, 377 (2018).
  • [11] S. J. Oh, D. Park, K. Kim, I. J. Shon, S. J. Lee, Mater. Sci. Eng. A. 725, 382 (2018).
  • [12] S. J. Oh, I. J. Shon, S. J. Lee, J. Korean Powder Metall. 25, 126 (2018).
  • [13] V. X. L. Filho, I. F. Barros, H. F. G. Abreu, Mater. Res. 20, 10 (2017).
  • [14] Y. Ustinovshikov, I. Shabanova, J. Alloys Compd. 578, 292 (2013).
  • [15] M. B. Shongwe, M. M. Ramakokovhu, S. Diouf, M. O. Durowoju, B. A. Obadele, R. Sule, M. L. Lethabane, P. A. Olubambi, J. Alloys Compd. 678, 241 (2016).
  • [16] K. B. Reuter, D. B. Williams, J. I. Goldstein, Metall. Trans. A 20, 719 (1989)
  • [17] C. Kuhrt, L. Schultz, J. Appl. Phys. 73, 1975 (1993).
  • [18] G. K. Williamson, W. H. Hall, Acta Metall. 1, 22 (1953).
  • [19] I. Mobasherpour, A. A. Tofigh, M. Ebrahimi, Mater. Chem. Phys.138, 535 (2013).
  • [20] B. L. Averbach, M. Cohen, Trans. AIME. 196, 1 (1948).
  • [21] K. Kim, S. J. Oh, D. Park, I. J. Shon, S. J. Lee, Mater. Trans. 59, 1206 (2018).
  • [22] H. Shirazi, G. Miyamoto, S. H. Nedjad, T. Chiba, M. N. Ahmadabadi, T. Furuhara, Acta Metall. 144, 269 (2018).
  • [23] D. Park, S. J. Oh, I. J. Shon, S. J. Lee, Arch. Metall. Mater. 63, 1479 (2018).
  • [24] S. Lee, S. J. Lee, B. C. De Cooman, Scr. Mater. 65, 225 (2011).
  • [25] C. Y. Wang, Y. Chang, X. D. Li, K. M. Zhao, H. Dong, Sci. CHINA Technol. Sc. 59, 832 (2016).
  • [26] J. Burke, Kinetics of Phase Transformation in Metals, Pergamon Press, Oxford, United Kingdom, 1965.
  • [27] O. Matsumura, Y. Sakuma, H. Takechi, Scr. Mater. 21, 1301 (1987).
  • [28] N. Tsuchida, Y. Tomota, Mater. Sci. Eng. A 285, 345 (2000).
Uwagi
EN
1. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2016R1D1A1B03935163).
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4a4ee3d1-34f4-4511-aa3e-c06b4cb21ded
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.