PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Concept of Three-Dimensional Visualisation of Urbanised Areas for a 3D Real Property Register in Poland

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Virtual three-dimensional visualisations are a relatively new chapter in the history of terrain modelling in Poland. The visualisations prepared in Poland are considerably varied due to the adopted method of data processing and presentation. One of the main factors determining the course of works and their final result is the choice of the optimum data source for the task per-formed. The increasingly popular photogrammetric methods, including laser scanning, make it possible to create fully functional and visually attractive models. However, with their application, a complete visualisation of an extensive area (e.g. a mid-sized city) would entail significant expense and require a huge workload due to the unavailability of ready input data. This publication describes an alternative, economical and fast method for preparing simplified three-dimensional visualisations of a territory with an almost unlimited surface area, developed for a selected part of Poland. Based on their visualisations, the authors propose using data from local databases linked to nationwide digital geodetic resources for the needs of a 3D real property register. This work contains a detailed description of methods used in creating visualisations and an evaluation of the quality of the project deliverable including a list of observations regarding different categories of the presented objects. In addition, the summary of this article suggests potential solutions to improve the process of visualisation by using different types of data modification.
Twórcy
  • Faculty of Environmental Engineering and Geodesy, University of Life Sciences in Lublin; 13 Akademicka Street, 20-950 Lublin, Poland
  • Geodetic and Cartographic Enterprise “EGiB”, 2A Chmielna Street, 20-079 Lublin, Poland
  • Geodetic and Cartographic Enterprise “EGiB”, 2A Chmielna Street, 20-079 Lublin, Poland
autor
  • Faculty of Environmental Engineering and Land Surveying, University of Agriculture in Krakow, al. Mickiewicza 24/28, 31-059 Krakow, Poland
  • Faculty of Environmental, Geomatic and Energy Engineering, Kielce University of Technology, al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
Bibliografia
  • 1. Baranowski M. Metody geowizualizacji. Rocznik Geomatyki 2006, IV-2,29–34.
  • 2. Piech, I. Wizualizacja numerycznego modelu terenu dla fragmentu obszaru Kamionki Wielkiej. Infrastruktura i Ekol. Teren. Wiej. 2011, 3, 125–137.
  • 3. Mika, M.; Leń P. Analysis of the faulty spatial structure of land in the context of assessing the quality of cadastral data in Poland. In SGEM2016 Conference Proceedings, 28 June – 6 July 2016, 2, 2, 91–100.
  • 4. Przewięźlikowska, A.; Buśko, M. The analysis of the updating time of subject and object data due to the information flow between the systems of the real estate cadastre and the land and mortgage register. In SGEM2014 Conference Proceedings, 19–25 June 2014, 1, 1, 113–120.
  • 5. Muchowa Z., Juskowa, K., Stakeholders’ perception of defragmentation of new plots in a land consolidation project: given the surprisingly different Slovak and Czech approaches. Land use policy 2017, 66, 356–363.
  • 6. Hudecova L. Cadastral database and communication channels of the real estate cadastre in Slovakia. Conference: 18th International Multidisciplinary Scientific GeoConference 2018. DOI: 10.5593/sgem2018/2.2/S09.078.
  • 7. Tomić, H.; Ivić, S.M.; Roić, M. Land consoldation suitability ranking of Cadastral municipalities: information-based decision-making using multicriteria analyses of official registers’ data. ISPRS Int. J. Geo-Inform. 2018, 7(3), 87.
  • 8. Siejka, M.; Ślusarski, M.; Mika, M. . Legal and technical aspects of modernization of land and buildings cadastre in selected area. Reports Geod. Geoinformatics 2015, 99, 44–53.
  • 9. Karabin M.;, Bakuła K.; Fijałkowska A.; KarabinZych M. Feasibility study of 3D cadastre implementation using various data sources – the case of Warsaw Subway, Geodetski Vestnik, 2018. Vol. 62, no. 3, 2018,445–457.
  • 10. Bremer, M.; Mayr, A.; Wichmann, V.; Schmidtner, K.; Rutzinger, M. A new multi-scale 3D-GIS-approach for the assessment and dissemination of solar income of digital city models. Comput. Environ. Urban Syst. 2016, 57, 144–154.
  • 11. Regulation of the Minister of Administration and Digitalization of 2 November 2015 concerning the topographic objects database and the master map (Dz. U. (JL) 2015 item 2028)
  • 12. Act of 17 May 1989 – Geodetic and Cartographic Law (Dz. U. (Journal of Laws) 1989 No. 30 item 163 as amended)
  • 13. GUS. Powierzchnia i ludność w przekroju terytorialnym w 2019 r. 2019. Central Statistical Office, Warsaw
  • 14. Flamanc, D.; Maillet, G.; Jibrini, H. 3D city models: An operational approach using aerial images and cadastral maps. ISPRS Arch. 2003, XXXIV-3/W8, 53–58.
  • 15. Scianna, A. Building 3D GIS data models using open source software. Appl. Geomat. 2013, 5, 119–132.
  • 16. Kolecka, N. Integracja GIS i wirtualnej rzeczywistości do wizualizacji i eksploracji danych geograficznych. Arch. Fotogrametrii Kartografii Teledetekcji 2008, 18, 241–250.
  • 17. Biljecki, F.; Heuvelink G.B.M.; Ledoux, H.; Stoter, J. Propagation of positional error in 3D GIS: estimation of the solar irradiation of building roofs. Int. J. Geogr. Inf. Sci. 2015, 29,12, 2269–2294.
  • 18. Biljecki, F.; Ledoux, H.; Stoter, J. Generation of multi-LOD city models in CityGML with the procedural modelling engine Random3DCity. ISPRS Ann Photogramm Remote Sens. Spatial Inf. Sci. 2016, IV-4/W1, 51–59.
  • 19. Steinhage, V.; Behley, J.; Meisel, S.; Cremers, A.B. Reconstruction by components for automated updating of 3D city models. Appl Geomat 2013, 5, 285–298.
  • 20. Roschlaub, R.; Batscheider, J. An INSPIRE-konform 3D building model of Bavaria using cadaster information, LIDAR and image matching. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2016, XLI-B4, 747–754.
  • 21. Guercke, R.; Götzelmann, T.; Brenner, C.; Sester, M. Aggregation of LoD1 building models as an optimization problem. ISPRS J. Photogramm. Remote Sens. 2011, 66, 209–222.
  • 22. OGC City Geography Markup Language (CityGML) Encoding Standard. Open Geospatial Consortium inc. 12–019 Version 2.0 Available from: https://www.ogc.org/standards/citygml (accessed on 9 August 2020)
  • 23. Biljecki F.; Ledoux H.; Stoter J.; Vosselman G. The variants of an LOD of a 3D421 building model and their influence on spatial analyses. 2016, ISPRS J Photogramm Remote Sens 422 116, 42–54.
  • 24. Zhang, M.; Zhang, L.; Mathiopoulos, T.; Xie, W.; Ding, Y.; Wanga, H. A geometry and texture coupled flexible generalization of urban building models. ISPRS J. Photogramm. Remote Sens. 2012, 70, 1–14.
  • 25. Mao, B.; Ban, Y.; Harrie, L. A multiple representation data structure for dynamic visualisation of generalised 3D city models. ISPRS J. Photogramm. Remote Sens. 2011, 66, 198–208.
  • 26. Nex, F.; Remondino, F. UAV for 3D mapping applications: a review. Appl. Geomat. 2014, 6, 1–15.
  • 27. Zheng, X.; Xiong, H.; Gong, J.; Yue, L. A morphologically preserved multi-resolution TIN surface modeling and visualization method for virtual globes. ISPRS J. Photogramm. Remote Sens. 2017, 129, 41–54.
  • 28. Gröger, G.; Plümer, L. CityGML – Interoperable semantic 3D city models. ISPRS J. Photogramm. Remote Sens. 2012, 71, 12–33.
  • 29. Biljecki F.; Ledoux H.; Stoter J. An improved LOD specification for 3D building416 models. 2016, Comput Environ Urban Syst 59,25–37.
  • 30. Biljecki F.; Dehbi Y. Raise the roof: Towards generating LoD models without aerial surveys using machine learning. 2019, ISPRS Ann Photogramm Remote Sens Spatial Inf Sci IV-407 4/W8, 27–34.
  • 31. Boeters, R.; Arroyo Ohori, K.; Biljecki, F; Zlatanova, S. Automatically enchancing CityGML LOD2 models with a corresponding indoor geometry. Int. J. Geogr. Inf. Sci. 2015, 29, 12, 2248–2268.
  • 32. Arroyo Ohori; K.; Biljecki, F.; Kumar, K.; Ledoux, H.; Stoter, J. (2018) Modelling Cities and Landscapes in 3D with CityGML. In Building Information Modeling, Borrmann, A.; König, M.; Koch, C.; Beetz, J., Eds.; Springer, Berlin, Germany, 2018; pp. 199–215.
  • 33. Haala, N.; Kada, M. An update on automatic 3D building reconstruction. ISPRS J. Photogramm. Remote Sens. 2010, 65, 570–580.
  • 34. Cisło-Lesicka, U.; Borowiec, N.; Marmol, U.; Pyka, K. Analiza przydatności lotniczego skaningu laserowego do opracowania modelu budynków 3D zgodnego ze specyfikacją INSPIRE. Arch. Fotogrametrii Kartografii Teledetekcji 2014, 26, 39–52.
  • 35. Mróz, R.; Wiśniewska, A.; Fijałkowska, A. Przekształcenie cyfrowej mapy zasadniczej do postaci trójwymiarowej dla wizualizacji i analiz przestrzennych urządzeń podziemnych. Rocz.Geomatyki 2014, XII, 4(66), 417–426.
  • 36. Lewandowicz, E.; Kacprzak, D. (2014) Transformacja zbiorów GESUT w postaci CAD do GIS. Rocz. Geomatyki 2014, XII,2(64), 225–230.
  • 37. He, J.; Zou, Y.; Ma, Y.; Chen, G. Assistant Design System of Urban Underground Pipeline Based on 3D Virtual City. Procedia Environ. Sci. 2011, 11, 1352–1358.
  • 38. Müller Arisona, S.; Zhong, C.; Huang, X.; Qin, R. Increasing detail of 3D models through combined photogrammetric and procedural modelling. Geospatial Inf. Sci. 2013, 16,1, 45–53.
  • 39. Tucci, G.; Corongiu, M.; Flamigni, F.; Comparini, A.; Panighini, F.; Parisi, E.I.; Arcidiaco, L. The validation process of a 3D multisource/multi-resolution model for railway infrastructures. Appl. Geomat. 2019, 12, 69–84.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4a49e40d-3447-493b-bce3-f5454334d5e6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.