Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper an example of hardware implementation of binaural sound source localization is presented. Using only two microphones, which correspond approximately to binaural hearing, limits the possibility of exact sound source localization. In contrast to human auditory system (HAS), only the angle of arrival determination is possible in implemented system. Moreover, the angle of arrival (AoA) could be determined here in a limited range of values located on a half-plane. First, the base formulas used by implemented algorithm are shown. Next, selected hardware platforms and peripheral modules are described. The VHDL tools for synthesis and implementation are used. Finally, resources consumed by hardware CPLD/FPGA implementation and selected test results are presented.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
396--398
Opis fizyczny
Bibliogr. 14 poz., rys., schem., tab., wzory
Twórcy
autor
- West Pomeranian University of Technology Szczecin, Faculty of Computer Science And Information Technology, ul. Żołnierska 52, 71-210 Szczecin
autor
- West Pomeranian University of Technology Szczecin, Faculty of Computer Science And Information Technology, ul. Żołnierska 52, 71-210 Szczecin
Bibliografia
- [1] Calmes L.: Biologically Inspired Binaural Sound Source Localization and Tracking for Mobile Robots. PhD thesis, RWTH Aachen University, 2009.
- [2] Calmes L.: The sound Localizer Software, http://www.laurent calmes.lu/soundloc_software.html, (access: November 2016).
- [3] Digilent website: CoolRunner-II Starter Board Reference Manual. https://reference.digilentinc.com/_media/coolrunner-ii:coolrunner-ii_rm.pdf, (access: November 2016).
- [4] Digilent website: PmodAD1 Reference Manual. https:// reference.digilentinc.com/_media/reference/pmod/pmodad1/pmodad1_rm.pdf, (access: November 2016).
- [5] Fisher B. J., Seidl A. H.: Resolution of interaural time differences in the avian sound localization circuit – a modeling study. Frontiers in Computational Neuroscience, Vol. 8, Article 99, 2014.
- [6] Jeffress L. A.: A place theory of sound localization. Journal of Comparative & Physiological Psychology, 41(1): 35–39, 1948.
- [7] Jin J., Jin S., Lee S., Kim H. S., Choi J. S., Kim M., Jeon J. W.: Real-time Sound Localization Using Generalized Cross Correlation Based on 0.13 μm CMOS Process. Journal of Semiconductor Technology and Science, Vol.14, no. 2, April, 2014.
- [8] Knapp C. H., Carter G. C.: The generalized correlation method for estimation of time delay. IEEE Transactions on Acoustics, Speech, and Signal Processing, 24(4): 320–327, August 1976.
- [9] Kruczkowski P., Mąka T.: LibLaura: A Library for Binaural Sound Source Localization. Measurement Automation Monitoring, vol. 62, no. 12, 2016
- [10] Lunati V., Manhès J.; Danès P.: A versatile System-on-a-Programmable-Chip for array processing and binaural robot audition. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Portugal, 2012.
- [11] Meraoubi H., Boudraa B.: Fixed sound source localization in reverberant environments using a multimicrophone set. Société Française d'Acoustique. Acoustics 2012, Nantes, France, April 2012.
- [12] Moore B. C. J.: An Introduction to the Psychology of Hearing. BRILL, 6th ed., 2013.
- [13] ST website: Getting started with osxAcousticSL real-time sound source localization software expansion for STM32Cube. User manual. http://www.st.com/resource/en/user_manual/dm00239859.pdf, (access: November 2016).
- [14] Strumiłło P. (ed.): Advances in Source Localization. Intech, 2011, http://www.intechopen.com/books/advances-in-sound-localization
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4a3b734a-392d-4f6b-b09a-2d2511946f81