PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Węglowe kropki kwantowe jako potencjalne nośniki leków

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Carbon quantum dots as potential drug carriers
Języki publikacji
PL
Abstrakty
PL
Nanomateriały, w szczególności węglowe, cieszą się ostatnio coraz większym zainteresowaniem ze względu na możliwości ich bezpośredniego zastosowania w różnych dziedzinach nauki i przemysłu. Nanocząstki te mają unikalne właściwości, które można wykorzystać w biomedycynie do obrazowania i diagnostyki. Duże nadzieje wiąże się z wykorzystaniem innowacyjnych nanomateriałów jako nośników leków. Wysoki potencjał dla zastosowań biomedycznych posiadają węglowe kropki kwantowe (CQD - carbon quantum dots). W porównaniu z kontrowersyjnymi nanorurkami toksyczność CQD jest znikoma, a niewielkie rozmiary umożliwiają przenikanie przez barierę błony komórkowej. Charakter chemiczny i stopień grafityzacji powierzchni są podstawowymi parametrami definiującymi ich biokompatybilność. Udowodniono wielokrotnie w literaturze, że amorficzne węglowe kropki kwantowe są bardziej biozgodne niż grafityzowane. Unikalną cechą kropek kwantowych, wykorzystywaną przede wszystkim w diagnostyce, jest zdolność do fluorescencji. Cecha ta pozwala na śledzenie dystrybucji kropek kwantowych w komórkach lub nawet w całym organizmie. Przyłączenie związku terapeutycznego do powierzchni materiału pozwala również śledzić drogę leku oraz ułatwia jego internalizację. Do tej pory w literaturze większość uwagi skupiano wokół leków (głównie przeciwnowotworowych) immobilizowanych na „niewęglowych” kropkach kwantowych syntetyzowanych jako sole metali ciężkich. Podstawową wadą tych materiałów jest jednak ich toksyczność i brak możliwości biodegradowalności. Dlatego lepszym rozwiązaniem są amorficzne, biokompatybilne, biodegradowalne CQD. Obiecująca wydaje się perspektywa ich teranostycznego zastosowania.
EN
Recently, nanomaterials, especially carbonaceous, are gaining more and more attention due to the possibility of their direct use in various fields of science and industry. These nanoparticles possess unique properties that can be used in biomedical imaging and diagnostics. Great expectations are connected with using innovative nanomaterials as drug carriers. Carbon quantum dots (CQD) have high potential for biomedical applications. Compared with the controversial nanotubes, the toxicity of CQD is negligible and their small size allows for the penetration of the cell membrane barrier. The chemical nature and degree of surface graphitization are the basic parameters that define their biocompatibility. It has been proved repeatedly in the literature that the amorphous carbon quantum dots are more biocompatible than graphitic ones. A unique feature of quantum dots, used primarily in the diagnostics, is the ability to fluorescence. This feature allows to follow the distribution of quantum dots in the cells or even the whole body. Thus, connection of a therapeutic compound to the surface of the material also allows to track the path of the drug and moreover, facilitates its internalization. To date, most of the attention in the literature has been focused on drugs (mostly anti-cancer) immobilized on "inorganic" quantum dots, which are synthesized as heavy metal salts. The main drawback of these materials, however, are their toxicity and non-biodegradability. Therefore, the use of amorphous, biocompatible, biodegradable CQD seems to be a better solution. Also, their theranostic application has become the promising perspective.
Rocznik
Strony
277--288
Opis fizyczny
Bibliogr. 58 poz.
Twórcy
  • Uniwersytet Mikołaja Kopernika w Toruniu, Wydział Chemii, Zespół Fizykochemii Materiałów Węglowych, ul. J. Gagarina 7, 87-100 Toruń
  • INVEST-TECH R&D Center, ul. Płaska 32-34, 87-100 Toruń
autor
  • Uniwersytet Mikołaja Kopernika w Toruniu, Wydział Biologii i Ochrony Środowiska, Zakład Biochemii, ul. J. Gagarina 7, 87-100 Toruń
autor
  • Uniwersytet Mikołaja Kopernika w Toruniu, Wydział Biologii i Ochrony Środowiska, Zakład Biochemii, ul. J. Gagarina 7, 87-100 Toruń
autor
  • Uniwersytet Mikołaja Kopernika w Toruniu, Wydział Chemii, Zespół Fizykochemii Materiałów Węglowych, ul. J. Gagarina 7, 87-100 Toruń
Bibliografia
  • [1] Jamieson T., Bakhshi R., Petrova D., Pocock R., Imani M., Seifalian A.M., Biological applications of quantum dots, Biomaterials 2007, 28, 4717-4732.
  • [2] Valizadeh A., Mikaeili H., Samiei M., Farkhani S.M., Zarghami N., Kouhi M., Akbarzadeh A., Davaran S., Quantum dots: synthesis, bioapplications, and toxicity, Nanoscale Research Letters, H. 2012, 7, 480.
  • [3] Smith A.M., Duan H., Mohs A.M., Nie S., Bioconjugated quantum dots for in vivo molecular and cellular imaging, Adv. Drug. Deliv. Rev. 2008, 60, 1226-1240.
  • [4] Xu Z.Q., Yang L.Y., Fan X.Y., Jin J.Ch., Mei J., Peng W., Jiang F.L., Xiao Q., Liu Y., Low temperature synthesis of highly stable phosphate functionalized two color carbon nanodots and their application in cell imaging, Carbon 2014, 66, 351-360.
  • [5] Zhai X., Zhang P., Liu Ch., Bai T., Li W., Dai L., Liu W., Highly luminescent carbon nanodots by microwave-assisted pyrolysis, Chemical Communications 2012, 48, 7955-7957.
  • [6] Li H., Kang Z., Liu Y., Lee S.T., Carbon nanodots: Synthesis, properties and applications, Journal of Materials Chemistry 2012, 22, 24230-24253.
  • [7] Esteves da Silva J.C.G., Goncalves H.M.R., Analytical and bioanalytical applications of carbon dots, Trends Anal. Chem. 2011, 30, 1327-1336.
  • [8] Cao L., Wang X., Meziani M.J., Lu F., Wang H., Luo P.G., Lin Y., Harruff B.A., Veca L.M., Murray D., Xie S.Y., Sun Y.P., Carbon dots for multiphoton bioimaging, Journal of the American Chemical Society 2007, 129, 11318-11319.
  • [9] Pan D.Y., Guo L., Zhang J.C., Xi C., Xue Q., Huang H., Li J.H., Zhang Z.W., Yu W.J., Chen Z.W., Li Z., Wu M.H., Cutting sp2 clusters in graphene sheets into colloidal graphene quantum dots with strong green fluorescence, J. Mater. Chem. 2012, 22, 3314-3318.
  • [10] Li H.T., He X.D., Liu Y., Huang H., Lian S.Y., Lee S.T., Kang Z.H., One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties, Carbon 2011, 49, 605-609.
  • [11] Tang L., Ji R., Cao X., Lin J., Jiang H., Li X., Teng K.S., Luk C.M., Zeng S., Hao J., Lau S.P., Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots, ACS Nano 2012, 6, 6, 5102-5110.
  • [12] Lim S.F., Riehn R., Ryu W.S., Khanarian N., Tung C.K., Tank D., Austin R.H., In vivo and scanning electron microscopy imaging of up-converting nanophosphors in Caenorhabditis elegans, Nano Lett. 2006, 6, 2, 169-174.
  • [13] Zuo J., Jiang T., Zhao X., Xiong X., Xiao S., Zhu Z., Preparation and application of fluorescent carbon dots, J. Nanomat. 2015, 787-862.
  • [14] Temkin H., Dolan G.J., Panish M.B., Chu S.N.G., Low-temperature photoluminescence from InGaAs/InP quantum wires and boxes, Appl. Phys. Lett. 1987, 50, 413.
  • [15] Murray C.B., Norris D.J., Bawendi M.G., Synthesis and characterization of nearly monodisperse CdE (E=S, Se, Te) semiconductor nanocrystallites, J. Am. Chem. Soc. 1993, 115, 8706-8715.
  • [16] Sun Y.P., Zhou B., Lin Y., Wang W., Fernando K.A., Pathak P., Meziani M.J., Harruff B.A., Wang X., Wang H., Luo P.G., Yang H., Kose M.E., Chen B., Veca L.M., Xie S.Y., Quantumsized carbon dots for bright and colorful photoluminescence, J. Am. Chem. Soc. 2006, 128, 24, 7756-7757.
  • [17] Liu H., Ye T., Mao C., Fluorescent carbon nanoparticles derived from candle soot, Angew. Chem. Int. Ed. Engl. 2007, 46, 6473-6475.
  • [18] Ray S.C., Saha A., Jana N.R., Sarkar R., Fluorescent carbon nanoparticles: Synthesis, characterization, and bioimaging application, J. Phys. Chem. C 2009, 113, 18546-18551.
  • [19] Selvi B.R., Jagadeesan D., Suma B.S., Nagashankar G., Arif M., Balasubramanyam K., Eswaramoorthy M., Kundu T.K., Intrinsically fluorescent carbon nanospheres as a nuclear targeting vector: delivery of membrane-impermeable molecule to modulate gene expression in vivo, Nano Letters 2008, 8, 3182-3188.
  • [20] Peng H., Travas-Sejdic J., Simple aqueous solution route to luminescent carbogenic dots from carbohydrates, Chem. Mater. 2009, 21, 5563-5565.
  • [21] Yang Z.-C., Li X., Wang J., Intrinsically fluorescent nitrogen-containing carbon nanoparticles synthesized by a hydrothermal process, Carbon 2011, 49, 5207-5212.
  • [22] Bourlinos A.B., Stassinopoulos A., Anglos D., Zboril R., Georgakilas V., Giannelis E.P., Photoluminescent carbogenic dots, Chem. Mater. 2008, 20, 4539-4541.
  • [23] Wang F., Pang S., Wang L., Li Q., Kreiter M., Liu C., One-step synthesis of highly luminescent carbon dots in noncoordinating solvents, Chem. Mater. 2010, 22, 4528-4530.
  • [24] Zhang B., Chun-yan Liu C.-Y., Liu Y., A novel one-step approach to synthesize fluorescent carbon nanoparticles, Eur. J. Inorg. Chem. 2010, 26, 4411-4414.
  • [25] Liu R., Wu D., Liu S., Koynov K., Knoll W., Li Q., An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers, Angew. Chem. Int. Ed. Engl. 2009, 48, 4598-4601.
  • [26] Chandra S., Pathan S.H., Mitra S., Modha B.H., Goswamic A., Pramanik P., Tuning of photoluminescence on different surface functionalized carbon quantum dots, RSC Advances 2012, 2, 3602-3606.
  • [27] Fang Y., Guo S., Li D., Zhu C., Ren W., Dong S., Wang E., Easy synthesis and imaging applications of cross-linked green fluorescent hollow carbon nanoparticles, ACS Nano 2012, 6, 1, 400-409.
  • [28] Bao L., Zhang Z.L., Tian Z.Q., Zhang L., Liu C., Lin Y., Qi B., Pang D.W., Electrochemical tuning of luminescent carbon nanodots: from preparation to luminescence mechanism, Adv. Mater. 2011, 23, 48, 5801-5806.
  • [29] Li H., He X., Kang Z., Huang H., Liu Y., Liu J., Lian S., Tsang C.H., Yang X., Lee S.T., Watersoluble fluorescent carbon quantum dots and photocatalyst design, Angew. Chem. Int. Ed. Engl. 2010, 49, 4430-4434.
  • [30] Peng J., Gao W., Gupta B.K., Liu Z., Romero-Aburto R., Ge L., Song L., Alemany L.B., Zhan X., Gao G., Vithayathil S.A., Kaipparettu B.A., Marti A.A., Hayashi T., Zhu J.J., Ajayan P.M., Graphene quantum dots derived from carbon fibers, Nano Lett. 2012, 12, 844-849.
  • [31] Zhuo S., Shao M., Lee S.T., Upconversion and downconversion fluorescent graphene quantum dots: ultrasonic preparation and photocatalysis, ACS Nano 2012, 6, 1059-1064.
  • [32] Hens S.C., Lawrence W.G., Kumbhar A.S., Shenderova O., Photoluminescent nanostructures from graphite oxidation, J. Phys. Chem. C 2012, 116, 20015-20022.
  • [33] Bhunia S.K., Saha A., Maity A.R., Ray S.C., Jana N.R., Carbon nanoparticle-based fluorescent bioimaging probes, Sci. Rep. 2013, 3, 1473.
  • [34] Zhou L., He B., Huang J., Amphibious fluorescent carbon dots: One-step green synthesis and application for light-emitting polymer nanocomposites, Chem. Commun. 2013, 49, 8078-8080.
  • [35] Liu S., Tian J., Wang L., Zhang Y., Qin X., Luo Y., Asiri A.M., Al-Youbi A.O., Sun X., Hydrothermal treatment of grass: A low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu(II) ions, Adv. Mater. 2012, 24, 2037-2041.
  • [36] Liang Q., Ma W., Shi Y., Li Z., Yang X., Easy synthesis of highly fluorescent carbon quantum dots from gelatine and their luminescent properties and applications, Carbon 2013, 60, 421-428.
  • [37] Sahu S., Behera B., Maiti T.K., Mohapatra S., Simple one-step synthesis of highly luminescent carbon dots from orange juice: Application as excellent bio-imaging agents, Chem. Commun. 2012, 48, 8835-8837.
  • [38] Huang H., Lv J.-J., Zhou D-L., Bao N., Xu Y., Wang A.-J., Feng J.-J., One-pot green synthesis of nitrogen-doped carbon nanoparticles as fluorescent probes for mercury ions, RSC Adv. 2013, 44, 21691-21696.
  • [39] Zhu C., Zhai J., Dong S., Bifunctional fluorescent carbon nanodots: Green synthesis via soy milk and application as metal-free electrocatalysts for oxygen reduction, Chem. Commun. 2012, 48, 9367-9369.
  • [40] Zhang Z., Hao J., Zhang J., Zhang B., Tang J., Protein as the source for synthesizing fluorescent carbon dots by a one-pot hydrothermal route, RSC Adv. 2012, 2, 8599-8601.
  • [41] Lu W., Qin X., Asiri A.M., Al-Youbi A.O., Sun X., Green synthesis of carbon nanodots as an effective fluorescent probe for sensitive and selective detection of mercury(II) ions, Journal of Nanoparticle Research 2013, 15, 1344.
  • [42] Zhang J.C., Shen W.Q., Pan D.Y., Zhang Z.W., Fang Y.G., Wu M.H., Controlled synthesis of green and blue luminescent carbon nanoparticles with high yields by the carbonization of sucrose, New J. Chem. 2010, 34, 591-593.
  • [43] Pan D., Zhang J., Li Z., Wu M., Hydrothermal route for cutting graphene sheets into blueluminescent graphene quantum dots, Adv. Mater. 2010, 22, 734-738.
  • [44] Ming H., Ma Z., Liu Y., Pan K.M., Yu H., Wang F., Kang Z.H., Large scale electrochemical synthesis of high quality carbon nanodots and their photocatalytic property, Dalton Trans. 2012, 41, 9526-9531.
  • [45] Medintz I.L., Uyeda H.T., Goldman E.R., Mattoussi H., Quantum dot bioconjugates for imaging, labelling and sensing, Nat. Mater. 2005, 4, 435-446.
  • [46] Medintz I.L., Clapp A.R., Mattoussi H., Goldman E.R., Fisher B., Mauro J.M., Self-assembled nanoscale biosensors based on quantum dot FRET donors, Nat. Mater. 2003, 2, 630-638.
  • [47] Qian Z., Ma J., Shan X., Feng H., Shao L., Chen J., Highly luminescent N-doped carbon quantum dots as an effective multifunctional fluorescence sensing platform, Chemistry 2014, 20, 2254-2263.
  • [48] Yang S.T., Cao L., Luo P.G., LuF. , Wang X., Wang H., Meziani M.J., Liu Y., Qi G., Sun Y.P, Carbon dots for optical imaging in vivo, J. Am. Chem. Soc. 2009, 131, 11308-11309.
  • [49] Wolfbeis O.S., An overview of nanoparticles commonly used in fluorescent bioimaging, Chem. Soc. Rev. 2015, 44, 4743-4768.
  • [50] Lim S.Y., Shena W., Gao Z.,Carbon quantum dots and their applications, Chem. Soc. Rev. 2015, 44, 362-381.
  • [51] Merian J., Gravier J., Navarro F., Texier I., Fluorescent nanoprobes dedicated to in vivo imaging: From preclinical validations to clinical translation, Molecules 2012, 17, 5564-5591.
  • [52] Wang Q., Huang X., Long Y., Wang X., Zhang H., Zhu R., Liang L., Teng P., Zheng H., Hollow luminescent carbon dots for drug delivery, Carbon 2013, 59, 192-199.
  • [53] Zheng M., Liu S., Li J., Qu D., Zhao H., Guan X., Hu X., Xie Z., Jing X., Sun Z., Integrating oxaliplatin with highly luminescent carbon dots: an unprecedented theranostic agent for personalized medicine, Advanced Matter 2014, 26, 3554-3560.
  • [54] Goh E.J., Kim K.S., Kim Y.R., Jung H.S., Beack S., Kong W.H., Scarcelli G., Yun S.H., Hahn S.K., Bioimaging of hyaluronic acid derivatives using nanosized carbon dots, Biomacromolecules 2012, 13, 2554-2561.
  • [55] Chen Y., Liu L., Modern methods for delivery of drugs across the blood-brain barrier, Advanced Drug Delivery Reviews 2012, 64, 640-665.
  • [56] Cupaioli F.A., Zucca F.A., Boraschi D., Zecca L., Engineered nanoparticles. How brain friendly is this new guest? Progress in Neurobiology 2014, 119-120, 20-38.
  • [57] Mei L., Zhang Z., Zhao L., Huang L., Yang X.L., Tang J., Feng S.S., Pharmaceutical nanotechnology for oral delivery of anticancer drugs, Adv. Drug Del. Rev. 2013, 65, 880-890.
  • [58] Gan C.W., Chien S., Feng S.S., Nanomedicine: enhancement of chemotherapeutical efficacy of docetaxel by using a biodegradable nanoparticle formulation, Curr. Pharm. Des. 2010, 16, 2308-2320.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4a39b00f-78d4-43e5-b581-b29ef6e98271
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.