PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wielopierścieniowe węglowodory aromatyczne w różnych frakcjach pyłu zawieszonego w powietrzu obszarów zdominowanych emisją komunikacyjną

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Polycyclic aromatic hydrocarbons in various franctions of ambient particulate matter at areas dominated by traffic emission
Języki publikacji
PL
Abstrakty
PL
W pracy zaprezentowano wyniki badań 16 wielopierścieniowych węglowodorów aromatycznych (WWA) związanych z czterema frakcjami pyłu zawieszonego (PM, PM10, PM2,5 i PM1; frakcje cząstek, których średnica aerodynamiczna mieści się w przedziałach od 30 nm do odpowiednio: 100; 10; 2,5 i 1 μm) prowadzonych w punktach zlokalizowanych na poboczu autostrady i przy ruchliwym skrzyżowaniu w Katowicach. Badania przy autostradzie prowadzono wiosną, a przy skrzyżowaniu latem 2012 roku. Próbki pobierano niskociśnieniowym impaktorem firmy DEKATI. Analizę WWA w próbkach pyłu wykonano metodą chromatografii gazowej. Średnie stężenie sumy 16 WWA związanych z PM, wiosną wynoszące 14,6 ng/m3, było dwa razy wyższe niż latem. Stężenie to było kilku, a nawet kilkunastokrotnie niższe niż stężenia notowane wcześniej w miastach Polski Południowej w zimie. Tymczasem wskaźniki toksyczności, mutagenności i kancerogenności obliczone dla WWA przy autostradzie i skrzyżowaniu były wysokie. Świadczy to o dużym zagrożeniu zdrowotnym generowanym obecnością WWA w powietrzu Katowic także w okresie wiosenno-letnim. Wartości wskaźników diagnostycznych, wskazujące z grubsza na pochodzenie WWA związanych z PM, potwierdziły, że w okresie badań komunikacja była głównym źródłem WWA w obu punktach Katowic.
EN
The paper presents the results of the research of 16 polycyclic aromatic hydrocarbons (PAHs) associated with four fractions of particulate matter (PM, PM10, PM2,5 and PM1; fractions of particles whose aerodynamic diameter ranges from 30 nm to respectively: 100, 10, 2.5 and 1 μm) conducted at points located on the side of a highway and at a busy crossroads in Katowice. The highway research was carried out in the spring, and the crossroads research in the summer of 2012. Samples were taken by low pressure impactor DEKATI. The analysis of PAHs in ambient particulate matter samples was performed by gas chromatography. The average concentration of the sum of 16 PAH associated with PM, which amounted to 14.6 ng/m3 in the spring, was two times higher than in the summer. This concentration was a few or even several times lower than the levels recorded earlier in the cities of southern Poland in the winter. Meanwhile, indicators of toxicity, mutagenicity and carcinogenicity calculated for PAH at the highway and the crossroads were high. This indicates high health risk generated by the presence of PAHs in the Katowice air also in spring and summer time. The values of diagnostic ratio, roughly showing the origin of PAHs associated with the PM, confirmed that during the period of the research transportation was the main source of PAHs in both points of Katowice.
Rocznik
Tom
Strony
25--32
Opis fizyczny
Bibliogr. 34 poz., tab., rys.
Twórcy
autor
  • Katedra Ochrony Powietrza, Politechnika Śląska, ul. Konarskiego 22B, 44-100 Gliwice
  • Instytut Podstaw Inżynierii Środowiska PAN, ul. M. Skłodowskiej-Curie 34, 41-819 Zabrze
  • Instytut Podstaw Inżynierii Środowiska PAN, ul. M. Skłodowskiej-Curie 34, 41-819 Zabrze
autor
  • Instytut Podstaw Inżynierii Środowiska PAN, ul. M. Skłodowskiej-Curie 34, 41-819 Zabrze
Bibliografia
  • 1. Bourotte C., Forti M.-C., Taniguchi S., Bícego M.C., Lotufo P.A. 2005. A wintertime study of PAHs in fine and coarse aerosols in São Paulo city, Brazil. Atmospheric Environment, 39(21), 3799–3811.
  • 2. Ćwiklak K., Pastuszka J.S., Rogula-Kozłowska W. 2009. Influence of traffic on particulate-matter polycyclic aromatic hydrocarbons in urban atmosphere of Zabrze, Poland. Polish Journal of Environmental Studies, 18(4), 579–585.
  • 3. Daher N., Saliba N., Shihadeh A.L., Jaafar M., Baalbaki R., Shafer M.M., Schauer J.J., Sioutas C. 2014. Oxidative potential and chemical speciation of size-resolved particulate matter (PM) at near-freeway and urban background sites in the greater Beirut area. Science of The Total Environment, 470–471, 417–426.
  • 4. Durant J.L., Busby Jr W.F., Lafleur A.L., Penman B.W., Crespi C.L. 1996. Human cell mutagenicity of oxygenated, nitrated and unsubstituted polycyclic aromatic hydrocarbons associated with urban aerosols. Mutation Research Genetic Toxicology, 371(3–4), 123–157.
  • 5. Dvorská A., Lammel G., Klánová J. 2011. Use of diagnostic ratios for studying source apportionment and reactivity of ambient polycyclic aromatic hydrocarbons over Central Europe. Atmospheric Environment, 45 (2), 420–427.
  • 6. Gianini M.F.D., Gehrig R., Fischer A., Ulrich A., Wichser A., Hueglin C. 2012. Chemical composition of PM10 in Switzerland: An analysis for 2008/2009 and changes since 1998/1999. Atmospheric Environment, 54, 97–106.
  • 7. Grynkiewicz-Bylina B., Rakwic B., Pastuszka J.S. 2005. Assessment of exposure to traffic-related aerosol and to particle-associated WWAs in Gliwice, Poland. Polish Journal of Environmental Studies, 14(1), 117–123.
  • 8. Hu J., Liu C.Q., Zhang G.P., Zhang Y.L. 2012. Seasonal variation and source apportionment of PAHs in TSP in the atmosphere of Guiyang, Southwest China. Atmospheric Research, 118, 271–279.
  • 9. Jyethi D.S., Khillare P.S., Sarkar S. 2014. Risk assessment of inhalation exposure to polycyclic aromatic hydrocarbons in school children. Environmental Science and Pollution Research, 21, 366–378.
  • 10. Kim K.H., Jahan S.A., Kabir E., Brown R.J.C. 2013. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environment International, 60, 71–80.
  • 11. Kittelson D.B. 1998. Engines and nanoparticles: A review. Journal of Aerosol Science, 29(5–6), 575–588.
  • 12. Kozielska B., Rogula-Kozłowska W., Klejnowski K. 2015. Selected organic compounds in fine particulate matter at the regional background, urban background and urban traffic points in Silesia (Poland). International Journal of Environmental Research, 9(2), 575–584.
  • 13. Kozielska B., Rogula-Kozłowska W., Pastuszka J.S. 2013. Traffic emission effects on ambient air pollution by PM2,5-related PAH in Upper Silesia, Poland. International Journal of Environment and Pollution, 53(3–4), 245–264.
  • 14. Li C.K., Kamens R.M. 1993. The use of polycyclic aromatic hydrocarbons as sources signatures in receptor modeling. Atmospheric Environment, 27A, 523–532.
  • 15. Li Z., Porter E.N., Sjödin A., Needham L.L., Lee S., Russell A.G., Mulholland J.A. 2009. Characterization of PM2,5-bound polycyclic aromatic hydrocarbons in Atlanta-Seasonal variations at urban, suburban, and rural ambient air monitoring sites. Atmospheric Environment, 43(27), 4187–4193.
  • 16. Maricq M.M. 2007. Chemical characterization of particulate emission from diesel engines: a review. Aerosol Science, 38(11), 1079–1118.
  • 17. Martellini T., Giannoni M., Lepri L., Katsoyiannis A., Cincinelli A. 2012. One year intensive PM2,5- bound polycyclic aromatic hydrocarbons monitoring in the area of Tuscany, Italy. Concentrations, source understanding and implications. Environmental Pollution, 164, 252–258.
  • 18. Mirante F., Alves C., Pio C., Pindado O., Perez R., Revuelta M.A., Artiñano B. 2013. Organic composition of size segregated atmospheric particulate matter, during summer and winter sampling campaigns at representative sites in Madrid, Spain. Atmospheric Research, 132–133, 345–361.
  • 19. Nisbet I.C.T., LaGoy P.K. 1992. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regulatory Toxicology and Pharmacology, 16(3), 290–300.
  • 20. Ringuet J., Albinet A., Leoz-Garziandia E., Budzinski H., Villenave E. (2012). Diurnal/nocturnal concentrations and sources of particulate-bound PAHs, OPAHs and NPAHs at traffic and suburban sites in the region of Paris (France). Science of the Total Environment, 437, 297–305.
  • 21. Rogula-Kozłowska W., Kozielska B., Błaszczak B., Klejnowski K. 2012. The mass distribution of particle-bound PAH among aerosol fractions: A case-study of an urban area in Poland. Organic Pollutants Ten Years after the Stockholm Convention – Environmental and Analytical Update, InTech, 163–190.
  • 22. Rogula-Kozłowska W., Kozielska B., Klejnowski K. 2013. Concentration, origin and health hazard from fine particle-bound PAH at three characteristic sites in Southern Poland. Bulletin of Environmental Contamination and Toxicology, 91(3), 349–355.
  • 23. Rogula-Kozłowska W. 2014. Traffic-Generated Changes in the Chemical Characteristics of Size- Segregated Urban Aerosols. Bulletin of Environmental Contamination and Toxicology, 93(4), 493–502.
  • 24. Rogula-Kozłowska W. 2015. Chemical composition and mass closure of ambient particulate matter at a crossroads and a highway in Katowice, Poland. Environment Protection Engineering, 41, 15–29.
  • 25. Rogula-Kozłowska W. 2015. PAH and heavy metals in ambient particulate matter: A review of up-to-date worldwide data [W:] Synergic Influence of Gaseous, Particulate, and Biological Pollutants on Human Health, J.S. Pastuszka (ed.), CRC Press, 68–108.
  • 26. Sánchez-Jiménez A., Heal M.R., Beverland I.J. 2012. Correlations of particle number concentrations and metals with nitrogen oxides and other traffic-related air pollutants in Glasgow and London. Atmospheric Environment, 54, 667–678.
  • 27. Singh D.P., Gadi R., Mandal T.K., 2011. Characterization of particulate-bound polycyclic aromatic hydrocarbons and trace metals composition of urban air in Delhi, India. Atmospheric Environment, 45(40), 7653–7663.
  • 28. Šišović A., Pehnec G., Jakovljević I., Šilović Hujić M., Vadić V., Bešlić I. 2012. Polycyclic aromatic hydrocarbons at different crossroads in Zagreb, Croatia. Bulletin of Environmental Contamination and Toxicology, 88(3), 438–442.
  • 29. Slezakova K., Castro D., Begonha A., Delerue- Matos C., Alvim-Ferraz M.D.C., Morais S.. Pereira M.D.C. 2011. Air pollution from traffic emissions in Oporto, Portugal: Health and environmental implications. Microchemical Journal, 99(1), 51–59.
  • 30. Slezakova K., Castro D., Pereira M.C., Morais S., Delerue-Matos C., Alvim-Ferraz M.C. 2010. Influence of traffic emissions on the carcinogenic polycyclic aromatic hydrocarbons in outdoor breathable particles. Journal of the Air and Waste Management Association, 60(4), 393–401.
  • 31. Sofowote U.M., Hung H.. Rastogi A.K., Westgate J.N., Deluca P.F., Su Y., McCarry B.E. 2011. Assessing the long-range transport of PAH to a sub- Arctic site using positive matrix factorization and potential source contribution function. Atmospheric Environment, 45(4), 967–976.
  • 32. Vestenius M., Leppänen S., Anttila P., Kyllönen K., Hatakka J., Hellén H., Hyvärinen A.-P., Hakola H. 2011. Background concentrations and source apportionment of polycyclic aromatic hydrocarbons in south-eastern Finland. Atmospheric Environment, 45(20), 3391–3399.
  • 33. Zencak Z., Klanova J., Holoubek I., Gustafsson Ö. 2007. Source apportionment of atmospheric PAHs in the western balkans by natural abundance radiocarbon analysis. Environmental Science and Technology, 41(11), 3850–3855.
  • 34. Zhu Y., Fung D.C., Kennedy N., Hinds W.C., Eiguren-Fernandez A. 2008. Measurements of ultrafine particles and other vehicular pollutants inside a mobile exposure system on Los Angeles freeways. Journal of the Air and Waste Management Association, 58(3), 424–434.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4a373fc8-6fcf-4cfc-9e8d-e4b3f8a8a926
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.