PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improving the workability of materials during the dieless drawing processes by multi-pass incremental deformation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper explores the new method of improving the workability of materials in the dieless drawing processes. The proposed method is based on the implementation of a multi-pass incremental deformation. Moreover, in each pass, strain and strain rate sensitivity of flow stress should be positive and significant. An approach based on the finite element calculation of instability coefficient of plastic deformation and simultaneous modeling of material ductility were applied for prediction of the workability. Two dieless drawing processes have been investigated. The difference was related to the heating system-induction heating and laser heating. FE simulations and experimental tests for three materials, two magnesium alloys (MgCa0.8 and MgNi19) and pure copper were performed. It was shown that the most effective increase in workability by multi-pass deformation can be achieved using laser dieless drawing. This is possible due to the shorter heating area and, as a consequence, the larger strain rate, which leads to better stability of the deformation process.
Rocznik
Strony
323--336
Opis fizyczny
Bibliogr. 26 poz., fot., rys., wykr.
Twórcy
  • Department of Applied Computer Science and Modelling, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland
  • The University of Tokyo, Komaba 4-6-1, Meguro, Tokyo 153-8505, Japan
autor
  • The University of Tokyo, Komaba 4-6-1, Meguro, Tokyo 153-8505, Japan
  • Institute for Ferrous Metallurgy, ul. K. Miarki, 12-14, 44-100 Gliwice, Poland
Bibliografia
  • [1] Weiss V, Kot RA. Dieless wire drawing with transformation plasticity. Wire J. 1969;9:182–9.
  • [2] Tiernan P, Hillery MT. Dieless wire drawing an experimental and numerical analysis. J Mater Process Technol. 2004;155–156:1178–83.
  • [3] Furushima T, Shirasaki A, Manabe K. Fabrication of noncircular multicore microtubes by superplastic dieless drawing process. J Mater Process Technol. 2014;214:29–35.
  • [4] Tiernan P, Carolan R, Twohig E, Tofail SAM. Design and development of a novel load-control dieless rod drawing system. CIRP J Manuf Sci Technol. 2011;4:110–7.
  • [5] Li Y, Quick NR, Kar A. Structural evolution and drawability in laser dieless drawing of fine nickel wires. Mater Sci Eng A. 2003;358(1–2):59–70.
  • [6] Supriadi S, Furushima T, Manabe K. Development of precision profile control system with fuzzy model and correction function for tube dieless drawing. J Solid Mech Mater Eng. 2011;5(12):1059–70.
  • [7] Sekiguchi H, Kobatake K, Osakada K. A Fundamental Study on Dieless Drawing, In: Tobias SA, Koenigsberger F, editors. Proceedings of the 15th international machine tool design and research conference. London: Palgrave; 1975. p. 539–544.
  • [8] Furushima T, Manabe K. Experimental and numerical study on deformation behavior in dieless drawing process of superplastic microtubes. J Mater Process Technol. 2007;191:59–63.
  • [9] Furushima T, Manabe K. A novel superplastic dieless drawing process of ceramic tubes. CIRP Ann. 2017;66:265–8.
  • [10] Kustra P, Milenin A, Płonka B, Furushima T. Production process of biocompatible magnesium alloy tubes using extrusion and dieless drawing processes. J Mater Eng Perform. 2016;25(6):2528–35.
  • [11] Milenin A, Kustra P, Du P, Furusawa S, Furushima T. Computer aided design of the laser dieless drawing process of tubes from magnesium alloy with take into account ductility of the material. Procedia Manuf. 2018;15:302–10.
  • [12] Considère A. Mémoire sur l’emploi du fer et de l’acier dans les constructions. Ann Ponts Chaussees. 1885;9:574–775.
  • [13] He Y, Liu XF, Xie JX, Zhang HG. Processing limit maps for the stable deformation of dieless drawing. Int J Miner Metall Mater. 2011;18(3):330.
  • [14] Milenin A. Rheology-based approach of design the dieless drawing processes. Arch Civ Mech Eng. 2018;18:1309–17.
  • [15] Furushima T, Manabe K. Experimental study on multi-pass die-less drawing process of superplastic Zn%Al22 alloy microtubes. J Mater Process Technol. 2007;187–188:236–40.
  • [16] Crivello JC, Dam B, Denys RV, Dornheim M, Grant DM, Huot J, Jensen TR, de Jongh P, Latroche M, Milanese C, Milčius D, Walker GS, Zlotea CJ, Yartys VA. Review of magnesium hydride-based materials: development and optimisation. Appl Phys A Mater Sci Process. 2016;122:97.
  • [17] Milenin A, Byrska DJ, Grydin O. The multi-scale physical and numerical modeling of fracture phenomena in the MgCa0.8 alloy. Comput Struct. 2011;89(11–12):1038–49.
  • [18] Garcia V, Cabrera JM, Prado JM. Effects of precipitation during dynamic recrystallization of copper with different oxygen levels. Mater Sci Forum. 2007;558–559:511–6.
  • [19] Rao KP, Suresh K, Prasad YVRK, Dharmendra C, Hort N, Dieringa H. High temperature strength and hot working technology for as-cast Mg–1Zn–1Ca (ZX11) alloy. Metals. 2017;7:405.
  • [20] Doege E, Behrens BA, Kurz G, Vogt O. ASM handbook, metal-working: sheet forming. Form Magnes Alloys. 2006;14B:625–39.
  • [21] Bylya OI, Sarangi MK, Rohit N, Nayak A, Vasin RA, Blackwe PL. Simulation of the material softening during hot metal forming. Arch Metall Mater. 2015;60(3):1887–944.
  • [22] Bylya OI, Khismatullin T, Blackwell P, Vasin RA. The effect of elastoplastic properties of materials on their formability by flow forming. J Mater Process Technol. 2018;252:34–44.
  • [23] Wright RN, Wright EA. Basic analysis of dieless drawing. Wire J Int. 2000;33:138–43.
  • [24] Slomchak G, Milenin A, Mamuzic I, Vodopivec F. A mathematical model of the formation of the plastic deformation zone in the rolling of rheologically complex metals and alloys. J Mater Process Technol. 1996;58(2):184–8.
  • [25] Biba N, Maximov A, Stebunov S, Vlasov A. The model for simulation of thermally, mechanically and physically coupled problems of metal forming, In: Kusiak J, Majta J, Szeliga D, editors. Proceedings of the 14th international conference on metal forming, Krakow, Poland. 2012. p. 1363–1366.
  • [26] Karjalainen LP, Perttula J. Characteristics of static and metadynamic recrystallization and strain accumulation in hot-deformed austenite as revealed by the stress relaxation method. ISIJ Int. 1996;36:729–36.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4a2ece50-3f39-4e51-998f-c54d8d9bb8cf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.