PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Inference-enabled tracking of acute mental stress via multi-modal wearable physiological sensing: A proof-of-concept study

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Objective: To develop a novel algorithm for tracking acute mental stress which can infer acute mental stress state from multi-modal digital signatures of physiological parameters compatible with wearable-enabled sensing. Methods: We derived prominent digital signatures of physiological responses to mental stress using cross-integration of multi-modal physiological signals including the electrocardiogram (ECG), photoplethysmogram (PPG), seismocardiogram (SCG), ballistocardiogram (BCG), electrodermal activity (EDA), and respiratory effort. Then, we developed an algorithm for tracking acute mental stress that can continuously classify stress vs no stress states by computing an aggregated likelihood computed with respect to a priori probability density distributions associated with the digital signatures of mental stress under stress and no stress states. Results: Our algorithm could adequately infer mental stress state (average classification accuracy: 0.85, sensitivity: 0.85, specificity: 0.86) using a small number of prominent digital signatures derived from cross-integration of multi-modal physiological signals. The digital signatures in our work significantly outperformed the digital signatures employed in the state-of-the-art in tracking acute mental stress. Its exploitation of collective inference allowed for improved inference of mental stress state relative to naïve data mining techniques. Conclusion: Our algorithm for tracking acute mental stress has the potential to make a leap in continuous, highaccuracy, and high-confidence inference of mental stress via convenient wearable-enabled physiological sensing. Significance: The ability to continuously monitor and track mental stress can collectively improve human wellbeing.
Twórcy
  • Department of Mechanical Engineering, University of Maryland, College Park, MD, USA
  • Department of Mechanical Engineering, University of Maryland, College Park, MD, USA
  • Department of Mechanical Engineering, University of Maryland, College Park, MD, USA
  • Department of Mechanical Engineering, University of Maryland, College Park, MD, USA
autor
  • Department of Bioengineering, University of Maryland, College Park, MD, USA
  • School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
autor
  • School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
autor
  • School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
autor
  • Department of Mechanical Engineering, University of Maryland, College Park, MD, USA
Bibliografia
  • [1] Toussaint L, Shields GS, Dorn G, Slavich GM. Effects of Lifetime Stress Exposure on Mental and Physical Health in Young Adulthood: How Stress Degrades and Forgiveness Protects Health. J Health Psychol 2016;21:1004-14. https://doi.org/10.1177/1359105314544132.
  • [2] Gullette ECD. Effects of Mental Stress on Myocardial Ischemia During Daily Life. JAMA: The Journal of the American Medical Association 1997;277:1521. DOI: 10.1001/jama.1997.03540430033029.
  • [3] Jiang W, Babyak M, Krantz DS, Waugh RA, Edward Michael Hanson RM, Frid DJ, et al. Mental Stress-Induced Myocardial Ischemia and Cardiac Events. JAMA 1996; 21:1651-6.
  • [4] Rozanski A, Bairey N, Krantz DS, Friedman J, Resser KJ, Morell M, et al. Mental Stress and the Induction of Silent Myocardial Ischemia in Patients with Coronary Artery Disease. N Engl J Med 1988;318:1005-12.
  • [5] Esler M. Mental Stress and Human Cardiovascular Disease. Neurosci Biobehav Rev 2017;74:269-76. https://doi.org/10.1016/j.neubiorev.2016.10.011.
  • [6] Esler M, Eikelis N, Schlaich M, Lambert G, Alvarenga M, Dawood T, et al. Chronic Mental Stress is a Cause of Essential Hypertension: Presence of Biological Markers of Stress. Clin Exp Pharmacol Physiol 2008;35:498-502. https://doi.org/10.1111/j.1440-1681.2008.04904.x.
  • [7] Pickering TG. Mental Stress As a Causal Factor in the Development of Hypertension and Cardiovascular Disease. Curr Hypertens Rep 2001;3:249-54.
  • [8] Ghiadoni L, Donald AE, Cropley M, Mullen MJ, Oakley G, Taylor M, et al. Mental Stress Induces Transient Endothelial Dysfunction in Humans. Circulation 2000; 102:2473-8.
  • [9] Shankar NL, Park CL. Effects of Stress on Students’ Physical and Mental Health and Academic Success. Int J Sch Educ Psychol 2016;4:5-9. https://doi.org/10.1080/21683603.2016.1130532.
  • [10] Teixeira RR, Díaz MM, Da Silva Santos TV, Bernardes JTM, Peixoto LG, Bocanegra OL, et al. Chronic Stress Induces a Hyporeactivity of the Autonomic Nervous System in Response to Acute Mental Stressor and Impairs Cognitive Performance in Business Executives. PLoS One 2015;10. DOI: 10.1371/journal.pone.0119025.
  • [11] Herr RM, Barrech A, Riedel N, Gündel H, Angerer P, Li J. Long-Term Effectiveness of Stress Management at Work: Effects of the Changes in Perceived Stress Reactivity on Mental Health and Sleep Problems Seven Years Later. Int J Environ Res Public Health 2018;15. DOI: 10.3390/ijerph15020255.
  • [12] Gedam S, Paul S. A Review on Mental Stress Detection Using Wearable Sensors and Machine Learning Techniques. IEEE Access 2021;9:84045-66. https://doi.org/10.1109/access.2021.3085502.
  • [13] Carter JR, Kupiers NT, Ray CA. Neurovascular responses to mental stress. J Physiol 2005;564:321-7. https://doi.org/10.1113/jphysiol.2004.079665.
  • [14] Kuipers NT, Sauder CL, Carter JR, Ray CA. Neurovascular responses to mental stress in the supine and upright postures. J Appl Physiol 1985;2008(104):1129-36. https://doi.org/10.1152/japplphysiol.01285.2007.
  • [15] Krantz G, Forsman M, Lundberg U. Consistency in physiological stress responses and electromyographic activity during induced stress exposure in women and men. Integr Physiol Behav Sci 2004;39:105-18. https://doi.org/10.1007/bf02734276.
  • [16] Carter JR, Ray CA. Sympathetic neural responses to mental stress: responders, nonresponders and sex differences. Am J Physiol Heart Circ Physiol 2009;296: H847-53. https://doi.org/10.1152/ajpheart.01234.2008.
  • [17] Betti S, Lova RM, Rovini E, Acerbi G, Santarelli L, Cabiati M, et al. Evaluation of an integrated system of wearable physiological sensors for stress monitoring in working environments by using biological markers. IEEE Trans Biomed Eng, vol. 65, IEEE Computer Society; 2018, p. 1748-58. DOI: 10.1109/TBME.2017.2764507.
  • [18] Milstein N, Gordon I. Validating Measures of Electrodermal Activity and Heart Rate Variability Derived From the Empatica E4 Utilized in Research Settings That Involve Interactive Dyadic States. Front Behav Neurosci 2020;14:148. https://doi.org/10.3389/fnbeh.2020.00148.
  • [19] Han HJ, Labbaf S, Borelli JL, Dutt N, Rahmani AM. Objective stress monitoring based on wearable sensors in everyday settings. J Med Eng Technol 2020;44: 177-89. https://doi.org/10.1080/03091902.2020.1759707.
  • [20] Giannakakis G, Grigoriadis D, Giannakaki K, Simantiraki O, Roniotis A, Tsiknakis M. Review on Psychological Stress Detection Using Biosignals. IEEE Trans Affect Comput 2022;13:440-60. https://doi.org/10.1109/TAFFC.2019.2927337.
  • [21] Hjortskov N, Riss´en D, Blangsted AK, Fallentin N, Lundberg U, Søgaard K. The effect of mental stress on heart rate variability and blood pressure during computer work. Eur J Appl Physiol 2004;92:84-9. https://doi.org/10.1007/s00421-004-1055-z.
  • [22] Arza A, Garzón-Rey JM, Lázaro J, Gil E, Lopez-Anton R, de la Camara C, et al. Measuring acute stress response through physiological signals: towards a quantitative assessment of stress. Med Biol Eng Comput 2019;57:271-87. https://doi.org/10.1007/s11517-018-1879-z.
  • [23] Sloan RP, Shapiro PA, Bagiella E, Boni SM, Paik M, Bigger JT, et al. Effect of mental stress throughout the day on cardiac autonomic control. Biol Psychol 1994;37: 89-99. https://doi.org/10.1016/0301-0511(94)90024-8.
  • [24] Ahmed S, Bhuiyan TA, Nii M. PPG Signal Morphology-Based Method for Distinguishing Stress and Non-Stress Conditions. Journal of Advanced Computational Intelligence and Intelligent Informatics 2022;26:58-66. https://doi.org/10.20965/jaciii.2022.p0058.
  • [25] Kalra P, Sharma V. Mental Stress Assessment Using PPG Signal a Deep Neural Network Approach. IETE J Res 2020;69:879-85. https://doi.org/10.1080/03772063.2020.1844068.
  • [26] Cheema A, Singh M. Psychological Stress Detection using Phonocardiography Signal: An Empirical Mode Decomposition Approach. Biomed Signal Process Control 2019;49:493-505. https://doi.org/10.1016/j.bspc.2018.12.028.
  • [27] Hakimi N, Jodeiri A, Mirbagheri M, Setarehdan SK. Proposing a Convolutional Neural Network for Stress Assessment by Means of Derived Heart Rate from Functional Near Infrared Spectroscopy. Comput Biol Med 2020;121:103810. https://doi.org/10.1016/j.compbiomed.2020.103810.
  • [28] Pernice R, Antonacci Y, Zanetti M, Busacca A, Marinazzo D, Faes L, et al. Multivariate Correlation Measures Reveal Structure and Strength of Brain-Body Physiological Networks at Rest and During Mental Stress. Front Neurosci 2021;14. DOI: 10.3389/fnins.2020.602584.
  • [29] Aigrain J, Spodenkiewicz M, Dubuiss S, Detyniecki M, Cohen D, Chetouani M. Multimodal Stress Detection from Multiple Assessments. IEEE Trans Affect Comput 2018;9:491-506. https://doi.org/10.1109/TAFFC.2016.2631594.
  • [30] Zanetti M, Mizumoto T, Faes L, Fornaser A, De Cecco M, Maule L, et al. Multilevel Assessment of Mental Stress via Network Physiology Paradigm using Consumer Wearable Devices. J Ambient Intell Humaniz Comput 2021;12:4409-18. https://doi.org/10.1007/s12652-019-01571-0.
  • [31] Inan OT, Migeotte PF, Park KS, Etemadi M, Tavakolian K, Casanella R, et al. Ballistocardiography and Seismocardiography: A Review of Recent Advances. IEEE J Biomed Health Inform 2015;19:1414-27. https://doi.org/10.1109/JBHI.2014.2361732.
  • [32] Zia J, Kimball J, Rolfes C, Hahn J-O, Inan OT. Enabling the Assessment of Trauma-Induced Hemorrhage via Smart Wearable Systems. Sci Adv 2020;6:eabb1708. https://doi.org/10.1126/sciadv.abb1708.
  • [33] Chalumuri YR, Kimball JP, Mousavi A, Zia JS, Rolfes C, Parreira JD, et al. Classification of Blood Volume Decompensation State via Machine Learning Analysis of Multi-Modal Wearable-Compatible Physiological Signals. Sensors 2022; 22:1336. https://doi.org/10.3390/s22041336.
  • [34] Vest AN, da Poian G, Li Q, Liu C, Nemati S, Shah AJ, et al. An Open Source Benchmarked Toolbox for Cardiovascular Waveform and Interval Analysis. Physiol Meas 2018:39. https://doi.org/10.1088/1361-6579/aae021.
  • [35] Zia J, Kimball J, Hersek S, Shandhi MH, Semiz B, Inan OT. A Unified Framework for Quality Indexing and Classification of Seismocardiogram Signals. IEEE J Biomed Health Inform 2020;24:1080-92. https://doi.org/10.1109/JBHI.2019.2931348.
  • [36] Gazi AH, Sundararaj S, Harrison AB, Gurel NZ, Wittbrodt MT, Alkhalaf M, et al. Transcutaneous Cervical Vagus Nerve Stimulation Inhibits the Reciprocal of the Pulse Transit Time’s Responses to Traumatic Stress in Posttraumatic Stress Disorder. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE; 2021. p. 1444-7. https://doi.org/10.1109/EMBC46164.2021.9630415.
  • [37] Gazi AH, Wittbrodt MT, Harrison AB, Sundararaj S, Gurel NZ, Nye JA, et al. Robust Estimation of Respiratory Variability Uncovers Correlates of Limbic Brain Activity and Transcutaneous Cervical Vagus Nerve Stimulation in the Context of Traumatic Stress. IEEE Trans Biomed Eng 2022;69:849-59. https://doi.org/10.1109/TBME.2021.3108135.
  • [38] Kleckner IR, Jones RM, Wilder-Smith O, Wormwood JB, Akcakaya M, Quigley KS, et al. Simple, Transparent, and Flexible Automated Quality Assessment Procedures for Ambulatory Electrodermal Activity Data. IEEE Trans Biomed Eng 2018;65: 1460-7. https://doi.org/10.1109/TBME.2017.2758643.
  • [39] Mukkamala R, Hahn J, Inan OT, Mestha LK, Kim C, Hakan T. Toward Ubiquitous Blood Pressure Monitoring via Pulse Transit Time: Theory and Practice. IEEE Trans Biomed Eng 2015;62:1879-901.
  • [40] Shin S, Yousefian P, Mousavi A, Mukkamala R, Jang DG, Ko BH, et al. A Unified Approach to Wearable Ballistocardiogram Gating and Wave Localization. IEEE Trans Biomed Eng 2021;68:1115-22.
  • [41] Yousefian P, Shin S, Mousavi AS, Kim C-S, Finegan B, McMurtry MS, et al. Physiological Association between Limb Ballistocardiogram and Arterial Blood Pressure Waveforms: A Mathematical Model-Based Analysis. Sci Rep 2019;9:5146. https://doi.org/10.1038/s41598-019-41537-y.
  • [42] Greco A, Valenza G, Lanata A, Scilingo EP, Citi L. CvxEDA: A Convex Optimization Approach to Electrodermal Activity Processing. IEEE Trans Biomed Eng 2016;63: 797-804. https://doi.org/10.1109/TBME.2015.2474131.
  • [43] Ashouri H, Orlandic L, Inan OT. Unobtrusive Estimation of Cardiac Contractility and Stroke Volume Changes using Ballistocardiogram Measurements on a High Bandwidth Force Plate. Sensors (Switzerland) 2016;16:787. https://doi.org/10.3390/s16060787.
  • [44] Jeffreys H. Theory of Probability. New York: Oxford University Press; 1961.
  • [45] Tivay A, Kramer GC, Hahn J-O. Collective Variational Inference for Personalized and Generative Physiological Modeling: A Case Study on Hemorrhage Resuscitation. IEEE Trans Biomed Eng 2022;69:666-77. https://doi.org/10.1109/TBME.2021.3103141.
  • [46] Parreira JD, Chalumuri YR, Mousavi AS, Modak M, Zhou Y, Sanchez-Perez JA, et al. A Proof-of-Concept Investigation of Multi-Modal Physiological Signal Responses to Acute Mental Stress. Biomed Signal Process Control 2023;85:105001. https://doi.org/10.1016/j.bspc.2023.105001.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4a2da5d2-9d07-4be4-8b66-5097b4e7de17
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.