PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical and hardware architecture of the semi-exoskeleton arm rehabilitation robot

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Projekt mechaniczny i architektura systemu sterowania semi-egzoszkieletalnego robota przeznaczonego do rehabilitacji kończyny górnej
Języki publikacji
EN
Abstrakty
EN
This paper deals with mechanical and hardware design of a robot, used for the rehabilitation of upper extremities. It has been called ARR-1 (Arm Rehabilitation Robot). The robot has a semi-exoskeleton structure. This means that some parts of the robot fit closely to the human arm (an orthosis), but the weight of the construction does not load patient’s body. The device is used for the whole arm rehabilitation, but active joints are only situated in glenohumeral and elbow joints. The robot is electrically actuated.
PL
Artykuł opisuje mechanikę oraz część sprzętową systemu sterowania robota przeznaczonego do rehabilitacji kończyny górnej. Robot został nazwany Arm Rehabilitation Robot - ARR i charakteryzuje się strukturą semi-egzoszkieletalną. Oznacza to, że część aktywna przylega do ciała pacjenta, a jego struktura kinematyczna przypomina kończynę górną, ale waga robota nie obciąża pacjenta. Urządzenie może być używane do rehabilitacji całej kończyny górnej, ale aktywne stopnie swobody znajdują się w stawach barkowo-obojczykowym oraz łokciowym. Robot jest napędzany silnikami elektrycznymi.
Rocznik
Strony
557--574
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
  • Lodz University of Technology, Institute of Automatic Control, 90-924 Lodz, Poland
Bibliografia
  • [1] Parasuraman S., Yee K.C., Oyong A.: “Human upper limb and arm kinematics for robot based rehabilitation,” in Proc. IEEE/ASME Int. Conf. Advanced Intelligent Mechatronics AIM 2009, 2009, pp. 845-850.
  • [2] Hogan N., Krebs H., Charnnarong J., Srikrishna P., Sharon A.: “MIT-MANUS: a workstation for manual therapy and training.” in IEEE International Workshop on Robot and Human Communication, 1992.
  • [3] Formica D., Zollo L., Guglielmelli E.: “Torque-dependent compliance control in the joint space of an operational robotic machine for motor therapy,” in Proc. 9th Int. Conf. Rehabilitation Robotics ICORR 2005, 2005, pp. 341-344.
  • [4] Reinkensmeyer D.J., Wolbrecht E., Bobrow J.: “A computational model of human-robot load sharing during robot-assisted arm movement training after stroke,” in Proc. 29th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society EMBS 2007, 2007, pp. 4019-4023.
  • [5] Wolbrecht E.T., Leavitt J., Reinkensmeyer D.J., Bobrow J.E.: “Control of a pneumatic orthosis for upper extremity stroke rehabilitation,” in Proc. 28th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society EMBS ’06, 2006, pp. 2687-2693.
  • [6] Jackson A.E., Makower S.G., Culmer P.R., Holt R.J., Cozens J.A., Levesley M.C., Bhakta B.B.: “Acceptability of robot assisted active arm exercise as part of rehabilitation after stroke,” in Proc. IEEE Int. Conf. Rehabilitation Robotics ICORR 2009, 2009, pp. 103-108.
  • [7] Mistry M., Mohajerian P., Schaal S.: “Arm movement experiments with joint space force fields using an exoskeleton robot,” in Proc. 9th Int. Conf. Rehabilitation Robotics ICORR 2005, 2005, pp. 408-413.
  • [8] Kousidou S., Tsagarakis N.G., Smith C., Caldwell D.G.: “Task-orientated biofeedback system for the rehabilitation of the upper limb,” in Proc. IEEE 10th Int. Conf. Rehabilitation Robotics ICORR 2007, 2007, pp. 376-384.
  • [9] Balasubramanian S., Wei R., Perez M., Shepard B., Koeneman E., Koeneman J., He J.: “RUPERT: An exoskeleton robot for assisting rehabilitation of arm functions,” in Proc. Virtual Rehabilitation, 2008, pp. 163-167.
  • [10] Sugar T.G., He J., Koeneman E.J., Koeneman J.B., Herman R., Huang H., Schultz R.S., Herring D.E., Wanberg J., Balasubramanian S., Swenson P., Ward J.A.: “Design and control of RUPERT: A device for robotic upper extremity repetitive therapy,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 15, no. 3, pp. 336-346, 2007.
  • [11] Umemura A., Saito Y., Fujisaki K.: “A study on powerassisted rehabilitation robot arms operated by patient with upper limb disabilities,” in Proc. IEEE Int. Conf. Rehabilitation Robotics ICORR 2009, 2009, pp. 451-456.
  • [12] Beer R., Mayhew D., Bredfeldt C., Bachrach B.: “Technical evaluation of the MACARM: A cable robot for upper limb neurorehabilitation,” in Proc. 2nd IEEE RAS & EMBS Int. Conf. Biomedical Robotics and Biomechatronics BioRob 2008, VOL. 1, NO. 11, NOVEMBER 2002 9, pp. 942-947.
  • [13] Jarrasse N., Robertson J., Garrec P., Paik J., Pasqui V., Perrot Y., Roby-Brami A., Wang D., Morel G.: “Design and acceptability assessment of a new reversible orthosis,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems IROS 2008, 2008, pp. 1933-1939.
  • [14] Philippe G., Gif-sur Y.: “Screw and nut transmission and cable attached to the screw,” U.S. Patent US 7,073,406 B2, 2006.
  • [15] Univ K., Scott S.H., Brown I.E., Ball S.J.: “Robotic exoskeleton for limb movement,” Worldwide Patent WO2 008 131 563 (A1), 2008.
  • [16] Zemlyakov V., McDonough P.: “Upper extremity exoskeleton structure and method,” U.S. Patent US2 003 115 954 (A1), 2003.
  • [17] Jungsoo H., Changsoo H., Hyeyoen J., Jaeho J., Youngsu L., Sungjoon H.: “Wearable robotic system for rehabilitation training of the upper limbs,” Worldwide Patent WO2 010 071 252 (A1), 2010.
  • [18] Frisoli A., Borelli L., Montagner A., Marcheschi S., Procopio C., Salsedo F., Bergamasco M., Carboncini M.C., Tolaini M., Rossi B.: “Arm rehabilitation with a robotic exoskeleleton in virtual reality,” in Proc. IEEE 10th Int. Conf. Rehabilitation Robotics ICORR 2007, 2007, pp. 631-642.
  • [19] Carignan C., Tang J., Roderick S., Naylor M.: “A configuration-space approach to controlling a rehabilitation arm exoskeleton,” in Proc. IEEE 10th Int. Conf. Rehabilitation Robotics ICORR 2007, 2007, pp. 179-187.
  • [20] Ren Y., Park H.-S., Zhang L.-Q.: “Developing a whole-arm exoskeleton robot with hand opening and closing mechanism for upper limb stroke rehabilitation,” in Proc. IEEE Int. Conf. Rehabilitation Robotics ICORR 2009, 2009, pp. 761-765.
  • [21] Li-Qun Z., Hyung-Soon P., Yupeng R.: “Robotic rehabilitation apparatus and method,” U.S. Patent US2 010 016 766 (A1), 2010.
  • [22] Nef T., Mihelj M., Colombo G., Riener R.: “ARMin - robot for rehabilitation of the upper extremities,” in Proc. IEEE Int. Conf. Robotics and Automation ICRA 2006, 2006, pp. 3152-3157.
  • [23] Nef T., Riener R.: “ARMin - design of a novel arm rehabilitation robot,” in Proc. 9th Int. Conf. Rehabilitation Robotics ICORR 2005, 2005, pp. 57-60.
  • [24] Guidali M., Schmiedeskamp M., Klamroth V., Riener R.: “Assessment and training of synergies with an arm rehabilitation robot,” in Proc. IEEE Int. Conf. Rehabilitation Robotics ICORR 2009, 2009, pp. 772-776.
  • [25] Gmerek A.: “High-level controller for an arm rehabilitation robot - positioning algorithms with respect to EMG data,” in Proc. IEEE Int. Conf. MMAR 2011, 2011, pp. 182-187.
  • [26] Chang Soo H., Jung Soo H., Tae Sick K., Hye Youn J., Jae Ho J., “Development of wearable robot mechanism for 3 DOF shoulder joint behavior,” Korean Patent KR20 090 036 177 (A), 2009.
  • [27] Parasuraman S., Oyong A.W., Ganapathy V.: “Development of robot assisted stroke rehabilitation system of human upper limb,” in Proc. IEEE Int. Conf. Automation Science and Engineering CASE 2009, 2009, pp. 256-261.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4a2c6ea1-b1e6-4f55-97da-58e527bc2d46
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.