PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of the NO2 concentration prediction possibility based on static and dynamic responses of TGS sensors at changing humidity levels

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The commercially available metal-oxide TGS sensors are widely used in many applications due to the fact that they are inexpensive and considered to be reliable. However, they are partially selective and their responses are influenced by various factors, e.g. temperature or humidity level. Therefore, it is important to design a proper analysis system of the sensor responses. In this paper, the results of examinations of eight commercial TGS sensors combined in an array and measured over a period of a few months for the purpose of prediction of nitrogen dioxide concentration are presented. The measurements were performed at different relative humidity levels. PLS regression was employed as a method of quantitative analysis of the obtained sensor responses. The results of NO2 concentration prediction based on static and dynamic responses of sensors are compared. It is demonstrated that it is possible to predict the nitrogen dioxide concentration despite the influence of humidity.
Rocznik
Strony
167--179
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
  • Gdańsk University of Technology, Faculty of Electronics, Telecommunications and Informatics, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Gdańsk University of Technology, Faculty of Electronics, Telecommunications and Informatics, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Gdańsk University of Technology, Faculty of Electronics, Telecommunications and Informatics, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Gdańsk University of Technology, Faculty of Electronics, Telecommunications and Informatics, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • [1] Guo, D., Zhang, D., Li, N., Zhang, L., Yang, J. (2010). A novel breath analysis system based on electronic olfaction. IEEE Trans. Biomed. Eng., 57, 1-11.
  • [2] Peris, M., Escuder-Gilabert, L. (2009). A 21st century technique for food control: Electronic noses. Anal. Chim. Acta., 638, 1-15.
  • [3] Capelli, L., Sironi, S., Del Rosso, R. (2014). Electronic Noses for Environmental Monitoring Applications. Sensors., 14, 19979-20007.
  • [4] Kalinowski, P., Strzelczyk, A., Wozniak, L., Jasinski,G., Jasinski, P. (2014). Determination of toxic gases based on the responses of a single electrocatalytic sensor and pattern recognition techniques. Meas. Sci. Technol., 25, 25101.
  • [5] Mikołajczyk, J., Bielecki, Z., Stacewicz, T., Smulko, J., Wojtas, J., Szabra, D., Lentka, Ł., Prokopiuk, A., Magryta, P. (2016). Detection of gaseous compounds by different techniques. Metrol. Meas. Syst., 23(2), 205-224.
  • [6] Yin, X., Zhang, L., Tian, F., Zhang, D. (2016). Temperature Modulated Gas Sensing E-Nose System for Low-Cost and Fast Detection. IEEE Sens. J., 16, 464-474.
  • [7] Gwiżdż, P., Brudnik, A., Zakrzewska, K. (2015). Hydrogen detection with a gas sensor array - processing and recognition of dynamic responses using neural networks. Metrol. Meas. Syst., 22(1), 3-12.
  • [8] Wozniak, L., Kalinowski, P., Jasiński, G., Jasiński, P. (2016). Determination of chlorine concentration using single temperature modulated semiconductor gas sensor. Proc. SPIE., 10161, 101610U.
  • [9] Kotarski, M., Smulko, J. (2009). Noise measurement setups for fluctuations enhanced gas sensing. Metrol. Meas. Syst., 16(4), 457-464.
  • [10] Macku, R., Smulko, J., Koktavy, P., Trawka, M., Sedlak, P. (2015) Analytical fluctuation enhanced sensing by resistive gas sensors. Sens. Actuators, B., 213, 390-396.
  • [11] Jasinski, G., Jasinski, P., Chachulski, B., Nowakowski, A. (2005). Lisicon solid electrolyte electrocatalytic gas sensor. J. Eur. Ceram. Soc., 25, 2969-2972.
  • [12] Jasinski, G., Strzelczyk, A., Kalinowski, P., Wozniak, L. (2016). Techniques of acquiring additional features of the responses of individual gas sensors. Proc. SPIE., 10161, 101610P.
  • [13] Barsan, N., Koziej, D., Weimar, U. (2007). Metal oxide-based gas sensor research: How to? Sens. Actuators B., 121, 18-35.
  • [14] Korotcenkov, G, Cho, B.K. (2013). Engineering approaches for the improvement of conductometric gas sensor parameters: Part 1. Improvement of sensor sensitivity and selectivity (short survey). Sens. Actuators B., 188, 709-728.
  • [15] Delpha, C., Siadat, M., Lumbreras, M. (1999). Humidity dependence of a TGS gas sensor array in an air-conditioned atmosphere. Sens. Actuators B., 59, 255-259.
  • [16] Sohn, J.H., Atzeni, M., Zeller, L., Pioggia, G. (2008). Characterisation of humidity dependence of a metal oxide semiconductor sensor array using partial least squares. Sens. Actuators B., 131, 230-235.
  • [17] Korotcenkov, G., Cho, B.K. (2011). Instability of metal oxide-based conductometric gas sensors and approaches to stability improvement (short survey). Sens. Actuators B., 156, 527-538.
  • [18] Romain, A.C., Nicolas, J. (2010). Long term stability of metal oxide-based gas sensors for e-nose environmental applications: An overview. Sens. Actuators B., 146, 502-506.
  • [19] Massok P., Loesch, M., Bertrand, D. (1995). Comparison between two Figaro sensors (TGS 813 and TGS 842) for the detection of methane, in terms of selectivity and long-term stability. Sens. Actuators B., 25, 525-528.
  • [20] El Barbri, N., Duran, C., Brezmes, J., Cañellas, N., Amírez, J.L., Bouchikhi, B., Llobet, E. (2008). Selectivity enhancement in multisensor systems using flow modulation techniques. Sensors., 8, 7369-7379.
  • [21] Brudzewski, K., Ulaczyk, J. (2009). An effective method for analysis of dynamic electronic nose responses. Sens. Actuators B., 140, 43-50.
  • [22] Maciejewska, M., Szczurek, A., Ochromowicz, Ł. (2009). The characteristics of a “stop-flow” mode of sensor array operation using data with the best classification performance. Sens. Actuators B., 141, 417-423.
  • [23] Wold, S., Sjöström, M., Eriksson, L. (2001). PLS-regression: A basic tool of chemometrics. Chemom, Intell. Lab. Syst., 2001, 109-130.
  • [24] Jasinski, G., Kalinowski, P., Wozniak, L. (2016). An electronic nose for quantitative determination of gas concentrations. Proc. SPIE, 10161, 101610.
  • [25] Chen, Q., Zhao, J., Liu, M., Cai, J., Liu, J. (2008). Determination of total polyphenols content in green tea using FT-NIR spectroscopy and different PLS algorithms. J. Pharm. Biomed. Anal., 46, 568-573.
  • [26] Palit, M., Tudu, B., Bhattacharyya, N., Dutta, A., Dutta, P.K., Jana, A., Bandyopadhyay, R., Chatterjee, A. (2010). Comparison of multivariate preprocessing techniques as applied to electronic tongue based pattern classification for black tea. Anal. Chim. Acta., 675, 8-15.
Uwagi
EN
1. This work is partially supported by Statutory Funds of Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology as well as by the National Centre for Research and Development, project LIDER No. 22/103/L-2/10/NCBiR/2011 „Multi-sensor system for measuring air pollutants”. Authors would like to thank Mr. Igor Sulim for his help during measurements.
PL
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4a28f548-1280-47e1-9297-89b6a1834af6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.