PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of the effect of rotational speed and rheological nature on heat transfer of complex fluid between two cylinders

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents numerical results for flow behavior between a cold inner cylinder and a hot outer cylinder. Both cylinders are placed horizontally. The space separating the two compartments is completely filled with a fluid of a complex rheological nature. In addition, the outer container is subjected to a constant and uniform rotational speed. The results of this work were obtained after solving the differential equations for momentum and energy. The parameters studied in this research are: the intensity of thermal buoyancy, the speed of rotation of the outer container and the rheological nature of the fluid. These elements are expressed mathematically by the following values: Richardson number (Ri = 0 and 1), Reynolds number (Re = 1 to 40), power-law number (n = 0.8, 1 and 1.4) and Prandtl number (Pr = 50). The results showed that the speed of rotation of the cylinder and the rheological nature of the fluids have an effective role in the process of heat transfer. For example, increasing the rotational speed of the enclosure and/or changing the nature of fluid from shearthickening into shear-thinning fluid improves the thermal transfer rate.
Rocznik
Strony
65--73
Opis fizyczny
Bibliogr. 45 poz., rys.
Twórcy
  • Laboratory of Sciences and Marine Engineering, Faculty of Mechanical Engineering, USTO-MB, BP 1505, El-Menaouer, Oran, 31000, Algeria
  • Laboratory of Sciences and Marine Engineering, Faculty of Mechanical Engineering, USTO-MB, BP 1505, El-Menaouer, Oran, 31000, Algeria
Bibliografia
  • [1] Chatterjee, D., & Halder, P. (2014). MHD mixed convective transport in square enclosure with two rotating circular cylinders. Numerical Heat Transfer, Part A, 65(8), 802–824. doi: 10.1080/10407782.2013.846687
  • [2] Chatterjee, D., & Halder, P. (2016). Magnetoconvective transport in a lid-driven square enclosure with two rotating circular cylinders. Heat Transfer Engineering, 37(2), 198–209. doi: 10.1080/01457632.2015.1044416
  • [3] Yoon, H.S., Ha, M.Y., Kim, B.S., & Yu, D.H. (2009). Effect of the position of a circular cylinder in a square enclosure on natural convection at Rayleigh number of 107. Physics of Fluids, 21(4),047101. doi: 10.1063/1.3112735
  • [4] Terekhov, V.I., & Ekaid, A.L. (2015). Turbulent natural convection inside a parallelepiped with heating of two opposite vertical walls. High Temperature, 53(3), 396–405. doi: 10.1134/S0018151X15020236
  • [5] Liao, C.C., & Lin, C.A. (2014). Transitions of natural convection flows in a square enclosure with a heated circular cylinder. Applied Thermal Engineering, 72(1), 41–47. doi: 10.1016/j.applthermaleng. 2014.02.071
  • [6] Laidoudi, H., Helmaoui, M., Bouzit, M., & Ghenaim, A. (2021). Natural convection of Newtonian fluids between two concentric cylinders of a special cross-sectional form. Thermal Science, 25(5B), 3701–3714. doi: 10.2298/TSCI200201190L
  • [7] Laidoudi, H. (2020). The role of concave walls of inner cylinder on natural convection in annular space. Acta Mechanica Malaysia, 3(2), 24–28. doi: 10.26480/amm.02.2020.24.28
  • [8] Laidoudi, H. (2020). Natural convection from four circular cylinders in across arrangement within horizontal annular space. Acta Mechanica et Automatica, 14(2), 98–102. doi: 10.2478/ ama2020-0014
  • [9] Laidoudi, H. (2020). Enhancement of natural convection heat transfer in concentric annular space using inclined elliptical cylinder. Journal of Naval Architecture and Marine Engineering, 17(2), 89-99. doi: 10.3329/jname.v17i2.44991
  • [10] Masoumi, H., Aghighi, M.S., Ammar, A., & Nourbakhsh, A. (2019). Laminar natural convection of yield stress fluids in annular spaces between concentric cylinders. International Journal . of Heat and Mass Transfer, 138, 1188–1198. doi: 10.1016/j.ijheatmasstransfer.2019.04.092
  • [11] Tayebi, T., & Chamkha, A.J. (2021). Analysis of the effects of local thermal non-equilibrium (LTNE) on thermo-natural convection in an elliptical annular space separated by a nanofluidsaturated porous sleeve. International Communications in Heat and Mass Transfer, 129, 105725. doi:10.1016/j.icheatmasstransfer.2021.105725
  • [12] Yigit, S., & Chakraborty, N. (2017). Influences of aspect ratio on natural convection of power-law fluids in cylindrical annular space with differentially heated vertical walls. Thermal Science and Engineering Progress, 2, 151–164. doi: 10.1016/j.tsep.2017.05.008
  • [13] Chen, S., Liu, Z., Bao, S., & Zheng, C. (2010). Natural convection and entropy generation in a vertically concentric annular space. International Journal of Thermal Sciences, 49(12), 2439–2452. doi: 10.1016/j.ijthermalsci.2010.08.011
  • [14] Laidoudi, H. (2018). The effect of blockage ratio on fluid flow and heat transfer around a confined square cylinder under the effect thermal buoyancy. Diffusion Foundations 16, 1–11. doi:10.4028/www.scientific.net/DF.16.1
  • [15] Cianfrini, M., Corcione, M., & Quintino, A. (2011). Natural convection heat transfer of nanofluids in annular spaces between horizontal concentric cylinders. Applied Thermal Engineering, 31(17–18), 4055–4063. doi: 10.1016/j.applthermaleng.2011.08.010
  • [16] Helmaoui, M., Laidoudi, H., Belbachir, A.,Ayad, A., & Ghaniam, A. (2020). Forced convection heat transfer from a pair of circular cylinders confined in ventilated enclosure. Diffusion Foundations, 26, 104–111. doi: 10.4028/www.scientific.net/DF.26.104
  • [17] Laidoudi, H., Helmaoui, M., Azeddine, B., Ayad, A. & Ghanaim, A. (2020). Effects of inlet and outlet ports of ventilated square cavity on flow and heat transfer, Diffusion Foundations, 26,78–85. doi: 10.4028/www.scientific.net/DF.26.78
  • [18] Hussain, S., Jamal, M., & Ahmed, S.E. (2019). Hydrodynamic forces and heat transfer of nanofluid forced convection flow around a rotating cylinder using finite element method: The impact of nanoparticles. International Communications in Heat and Mass Transfer, 108, 104310. doi: 10.1016/j.icheatmasstransfer.2019.104310
  • [19] Chatterjee, D., & Mondal, B.(2012). Forced convection heat transfer from an equilateral triangular cylinder at low Reynolds numbers. Heat and Mass Transfer, 48(9), 1575–1587. doi:10.1007/s00231-012-1006-x
  • [20] Habib, R.,Yadollahi, B., & Karimi, N. (2020). A Pore-Scale investigation of the transient response of forced convection in porous media to inlet ramp inputs. Journal of Energy Resources Technologies, 142(11), 112112. doi: 10.1115/1.4047968
  • [21] Alinejad, J., & Esfahani, J. A. (2014). Lattice Boltzmann simulation of forced convection over an electronic board with multiple obstacles, Heat Transfer Research, 45(3), 241–262. doi: 10.1615/HeatTransRes.2013005101
  • [22] Dey, P., & Das, A. K. (2016). A utilization of GEP (gene expression programming) met model and PSO (particle swarm optimization) tool to predict and optimize the forced convection around a cylinder. Energy, 95, 447–458. doi: 10.1016/j.energy.2015.12.021
  • [23] Rashidi, S., Dehghan, M., Ellahi, R., Riaze, M., & Jamal-Abad, M.T. (2015). Study of streamwise transverse magnetic fluid flow with heat transfer around an obstacle embedded in a porous medium. Journal of Magnetism and Magnetic Materials, 378, 128– 137. doi: 10.1016/j.jmmm.2014.11.020
  • [24] Gupta, S.K., Ray, S., & Chatterjee, D. (2015).Forced convection heat transfer in power-law fluids around a semi circular cylinder at incidence. Numerical Heat Transfer, Part A, 67, 952–971. doi:10.1080/10407782.2014.955335
  • [25] Selimefendigil, F., Öztop, H.F., & Abu-Hamdeh, N. (2020). Impacts of conductive inner L-shaped obstacle and elastic bottom wall on MHD forced convection of a nanofluid in vented cavity. Journal of Thermal Analysis and Calorimetry, 141, 465–482. doi:10.1007/s10973-019-09114-7
  • [26] Laidoudi, H., & Makinde, O.D. (2021). Computational study of thermal buoyancy from two confined cylinders within a square enclosure with single inlet and outlet ports. Heat Transfer, 50(2), 1335–1350. doi: 10.1002/htj.21932
  • [27] Ramla, M., Laidoudi, H., & Bouzit, M. (2022). Behaviour of a non-Newtonian fluid in a helical tube under the influence of thermal buoyancy. Acta Mechanica et Automatica, 16, 111–118. doi:10.2478/ama-2022-0014
  • [28] Laidoudi, H., & Bouzit, M. (2018). The Effect of Reynolds and Prandtl number on flow inside of plan channel of waved bottom wall under mixed convection. Diffusion Foundations, 16, 21–29. doi: 10.4028/www.scientific.net/DF.16.21
  • [29] Xiong, P.Y., Hamid, A., Iqbal, K., Irfan, M., & Khan, M. (2021). Numerical simulation of mixed convection flow and heat transfer in the lid-driven triangular cavity with different obstacle configurations. International Communications in Heat and Mass Transfer, 123, 105202. doi: 10.1016/j.icheatmasstransfer.2021.105202
  • [30] Singh, R.J., & Gohil, T.B. (2019). Numerical study of MHD mixed convection flow over a diamond-shaped obstacle using OpenFOAM. International Journal of Thermal Sciences, 146(7),106096. doi: 10.1016/j.ijthermalsci.2019.106096
  • [31] Shulepova, E.V., Sheremet, M.A.H., Oztop, F., & Abu-Hamdeh, N. (2020). Mixed convection of Al2O3–H2O nanoliquid in a square chamber with complicated fin. International Journal of Mechanical Sciences, 165, 105192. doi: 10.1016/j.ijmecsci.2019.105192
  • [32] Ahmed, S.E., Mansour, M.A., Hussein, A.K., Mallikarjuna, B., Almeshaal, M.A., & Kolsi, L. (2019). MHD mixed convection in an inclined cavity containing adiabatic obstacle and filled with Cu–water nanofluid in the presence of the heat generation and partial slip. Journal of Thermal Analysis and Calorimetry, 138(2), 1443–1460. doi: 10.1007/s10973-019-08340-3
  • [33] Qureshi, M. A., Hussain, S., & Sadiq M.A. (2021). Numerical simulations of MHD mixed convection of hybrid nanofluid flow in a horizontal channel with cavity: Impact on heat transfer and hydrodynamic forces. Case Studies in Thermal Engineering, 27,101321. doi: 10.1016/j.csite.2021.101321
  • [34] Fu, C., Rahmani, A., Suksatan, W., Alizadeh, S.M., Zarringhalam, M., Chupradit, S., & Toghraie, D.(2021). Comprehensive investigations of mixed convection of Fe–ethylene-glycol nanofluid inside an enclosure with different obstacles using lattice Boltzmann method. Scientific Reports, 11, 20710. doi:10.1038/s41598-021-00038-7
  • [35] Yousefzadeh, S., Rajabi, H., Ghajari,N., Sarafraz, M., Akbari, O.A., & Goodarzi, M. (2020). Numerical investigation of mixed convection heat transfer behaviour of nanofluid in a cavity with different heat transfer areas. Journal of Thermal Analysis and Calorimetry, 140(3), 2779–2803. doi: 10.1007/s10973-019-09018-6
  • [36] Laidoudi, H., & Ameur H., (2020). Investigation of the mixed convection of power-law fluids between two horizontal concentric cylinders: Effect of various operating conditions. Thermal Science and Engineering Progress, 20, 100731. doi: 10.1016/j.tsep.2020.100731
  • [37] Laidoudi, H., & Ameur, H. (2022). Complex fluid flow in annular space under the effects of mixed convection and rotating wall of the outer enclosure. Heat Transfer, 51(5), 3741–3767. doi:10.1002/htj.22472.
  • [38] Al-Kouz, W., Aissa, A., Shamshuddin, M.D., Obai, Y., Sahnoun, M., Anwar Bég, O., & Toghraie, D. (2021). Heat transfer and entropy generation analysis of water-Fe3O4/CNT hybrid magnetic nanofluid flow in a trapezoidal wavy enclosure containing porous media with the Galerkin finite element method. The European Physical Journal Plus, 136(11), 1184. doi: 10.1140/epjp/s13360-021-02192-3
  • [39] Shamshuddin, M.D., Mabood, F., Rajput, G.R.¸ Bég, O.A., & Badruddin, I.A. (2022) .Thermo-solutal dual stratified convective magnetized fluid flow from an exponentially stretching Riga plate sensor surface with thermophoresis. International Communications in Heat and Mass Transfer, 134(4), 105997. doi:10.1016/j.icheatmasstransfer.2022.105997
  • [40] Shamshuddin, M.D., Ullah Khan, S., Bég, O.A., & Bég, T.A. (2020). Hall current, viscous and Joule heating effects on steady radiative 2-D magneto-power-law polymer dynamics from an exponentially stretching sheet with power-law slip velocity: A numerical study. Thermal Science and Engineering Progress, 20,100732. doi: 10.1016/j.icheatmasstransfer.2022.105997
  • [41] Kadir, A., Bég, A.O., El Gendy, M.¸ Bég, T.A., & Shamshuddin, M.D. (2019). Computational fluid dynamic and thermal stress analysis of coatings for high-temperature corrosion protection of aerospace gas turbine blades. Heat Transfer, 48(6), 2302–2328.doi: 10.1002/htj.21493
  • [42] Anwar Bég, O., Bég, T.A., Karim, I. , Khan, M.S., Alam, M.M.,Ferdows, M., & Shamshuddin, MD. (2019). Numerical study of magneto-convective heat and mass transfer from inclined surface with Soret diffusion and heat generation effects: A model for ocean magnetic energy generator fluid dynamics. Chinese Journal of Physics, 60, 167–179. doi: 10.1016/j.cjph.2019.05.002
  • [43] Błasiak, P., & Pietrowicz, S. (2016). Towards a better understanding of 2D thermal-flow processes in a scraped surface heat exchanger. International Journal of Heat and Mass Transfer, 98, 240–256. doi: 10.1016/j.ijheatmasstransfer.2016.03.004
  • [44] Aliouane, I., Kaid, N., Ameur, H., & Laidoudi, H. (2021). Investigation of the flow and thermal fields in square enclosures: Rayleigh-Bénard’s instabilities of nanofluids. Thermal Science and Engineering Progress, 25(2), 100959. doi: 10.1016/j.tsep.2021.100959
  • [45] Laidoudi, H., & Bouzit, M. (2017). The effect of asymmetrically confined circular cylinder and opposing buoyancy on fluid flow and heat transfer. Defect and Diffusion Forum, 374, 18–28. doi:10.4028/www.scientific.net/DDF.374.18
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4a24f869-a3b7-4d05-a190-62e9b929787c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.