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INTRODUCTION

More than 40% of the world’s natural gas 
reserves are very sour, containing substantial 
amounts of sulfur and CO2, increasing to 60% for 
Middle Eastern gas reserves (Al-Jadir and Sip-
erstein 2019), Rafati 2019, Kadhim et al. 2021). 
Given that these gases can create corrosive acids 
that harm pipes, it is recommended that natural 
gas contain no more than two mol% carbon di-
oxide and four ppm hydrogen sulfide (Alqaheem 
2021). If the hydrogen sulfide (H2S) level of the 
natural gas surpasses 5.7 mg per cubic meter, the 
gas is typically regarded as soured Stewart and 

Arnold (2011). H2S is a colorless, corrosive, wa-
ter-soluble, highly toxic, and flammable acid gas 
that has the characteristic of the foul odor of rot-
ten eggs (Georgiadis et al. 2020). One of the prin-
cipal greenhouse gases, carbon dioxide (CO2), 
accumulates continuously in the atmosphere and 
has a negative impact on the ecosystem, espe-
cially because of the global warming phenomena. 
Among many other industrial operations, CO2 is 
emitted during the creation of electricity and the 
processing of natural gas.

Because of the harm that CO2, H2S, and other 
NG contaminants may do to people, machinery, 
and the environment, these dangers are becoming 
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more and more concerning. You can categorize 
natural gas as sweet or sour. It contains nitrogen, 
CO2, O2, isopentane, n-pentane, hexane, and H2, as 
well as methane, ethane, propane, isobutene, and 
n-butane. Helium, hydrogen sulfide, and mercap-
tans are some additional gases that contribute to 
the gas’ distinctive odor. The primary pollutants 
in NG are CO2 and H2S; these pollutants can be 
captured using amine solvents, absorption appara-
tus, and membranes. By using the distillation and 
absorption processes, additional pollutants, such 
as carbonyl sulfide, mercaptans, ethane, pentane, 
etc., are often eliminated (Sanni et al. 2022).

Various gas-sweetening techniques must be 
used depending on the type and amount of acid gas 
impurities that need to be eliminated (Alardhi et al. 
2022). The currently used processes are as follows: 
chemical absorption (Zhu et al. 2021), physical ab-
sorption (Burr and Lyddon 2008), membrane (Liu 
et al. 2020), direct conversion to sulphur (Mokhatab 
and Poe 2012), and physical adsorption (Webley 
2014). Instead of relying solely on physical absorp-
tion, chemical reactions are mostly used to remove 
the acid gases from hydrocarbon gas mixtures (Se-
qatoleslami et al. 2011). Today, amine techniques 
are frequently employed to sweeten gas (Koolivand 
et al. 2011). To get rid of carbon dioxide and hydro-
gen sulfide, utilize amine solutions. The majority of 
onshore gas sweetening operations employ a meth-
od simply referred to as the “amine process.” With 
this method, the gas containing hydrogen sulfide 
and/or carbon dioxide is pushed through a tower 
containing an amine solution. Similar to how glycol 
absorbs water, the amine solution is attracted to car-
bon dioxide and hydrogen sulfide. Diethanolamine 
and Monoethanolamine (MEA) are the two main 
amine solutions that are employed (DEA) (Stewart 
and Arnold 2011). A popular chemical absorbent 
used in refineries to remove acid gases is diethanol-
amine (DEA), which is classified as secondary, and 
methyl diethanolamine (MDEA), which is classi-
fied as tertiary. These solvents have several positive 
qualities, including low vapor pressure, low energy 
requirements, corrosiveness, high capacity, and 
high stability. Additionally, unlike DEA, MDEA is 
designed to remove H2S selectively when the goal 
is to collect it in the presence of CO2, whereas its 
reaction rate with CO2 is minimal.

There are numerous limitations to traditional 
methods for chemical engineering challenges, 
such as nonlinear systems and modeling highly 
complex. However, in a number of real-world ap-
plications, artificial neural networks (ANN) have 

been shown to be capable of solving complex prob-
lems. Due to their capacity to somewhat mimic 
human problem-solving behavior, which is chal-
lenging to replicate utilizing the logical, analyti-
cal techniques of expert systems and conventional 
software technologies, ANNs represent one of the 
artificial intelligence paradigms that are currently 
undergoing the most rapid development. The flex-
ibility and capacity of ANNs to simulate both lin-
ear and nonlinear systems without the need for 
an existing empirical model underlies their broad 
use. Due to this, the ANN has the edge over con-
ventional fitting techniques in several chemical 
applications. The main objective of this research 
is to predict the concentration of sour gases and 
assessment the gas-sweetening process subject to 
different operating conditions. The ultimate goals 
of an assessment of the sour gas concentrations 
of the unit operating with a toxic gas are: (1) to 
satisfy the quality of the sweet gas, (2) to provide 
data that can be used to make decisions regarding 
safety measures and to ensure the environmentally 
safe release gas containing H2S and CO2. Further-
more, to protect workers and nearby residents. (3) 
Assessment of a toxic gas concentration release 
requires an evaluation of potential adverse health 
effects and an analysis of the hazard zone around 
the facility for different release scenarios. In this 
regard, the ANN will be used as a prediction tool 
to estimate H2S and CO2 concentrations after the 
natural gas sweetening process. 

PROCESS FLOW AND DESCRIPTION 
OF PLANT

Sulfur removal and absorption of feed gas

The process flow is shown in Figure 1. The 
feed gas from the gas booster section enters this 
section under a temperature of 40–45°C and a 
pressure of 4.0 MPa. After the separation filter re-
moves the small solid particles, the liquid droplets 
are still possibly entrained in the gas. The feed gas 
and the MDEA, with a percentage of 36–38 wt%, 
enter the amine absorption tower. The feed gas in-
teracts with the amine solvent’s lean solution as 
it moves from the bottom to the top of the unit. 
Lean amine inlets are provided on the 18th, 20th, 
and 24th tray layers of the main absorption tower 
for adjusting the absorber operation to adapt to the 
changes in feed gas quality and ensure the qual-
ity indexes of sweet wet gas. After the sweet wet 
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gas is separated from the liquid on the top of the 
main absorber by the sweet gas scrubber, it is then 
passed to the user.

Flashing of rich amine 

The bottom of the amine absorber discharges 
the rich amine that has absorbed the acid gas. It 
enters the rich amine flash vessel after being pres-
sure-adjusted by the liquid level control valve at 
the base of the absorption tower. The flash ves-
sel’s solution and the dissolved condensate in it 
are separated, and the condensate is skimmed out 
of the solution system. Flashing off the solution 
in the vessel causes some of the dissolved hy-
drocarbon gas to release. Most of the H2S gas is 
separated from the flash gas as it flows from bot-
tom to top and contacts the lean amine as it flows 
from top to bottom. The flash gas from the top 
of the flash vessel then goes to the low-pressure 
flare knockout drum.

Amine regeneration 

Utilizing the liquid level control valve, the 
rich amine is pumped out of the depths of the rich 
amine flash vessel. Through the lean/rich solution 
heat exchanger, with the lean amine that is be-
ing delivered from the amine regenerator tower’s 
base, it exchanges heat (HE), with its tempera-
ture rising to about 100 ℃. After that, it enters the 
amine regenerator tower, flowing top to bottom 
and coming into touch with the steam, moving 
bottom to top inside the column in a count-cur-
rent manner. This process allows the hydrocar-
bons, H2S, and CO2 to be removed from the rich 
solution. The lean amine is pumped to the amine 

absorber (absorption tower), completing the cir-
culation of the whole solution system. The regen-
erator reboiler provides the heat required by the 
regeneration. Acid gas goes into the Flare system 
or the Sulfur recovery unit. Hot lean amine goes 
out from the bottom of the amine regenerator. Af-
ter its temperature is reduced to about 88 ℃ by ex-
changing heat with the rich amine in the lean/rich 
amine exchanger, it is sent to the amine gathering 
tank, which is then pumped by the hot lean amine 
pump to the lean amine air cooler. After cooling, 
part of the lean amine enters the lean amine filter 
to remove the mechanical impurities, then enter 
the activated carbon filter and lean amine solids 
filter for filtering and removing deterioration and 
degradation products from the solution. After fil-
tering, the lean amine goes into the amine flash 
vessel and the amine recycling pump. The lean 
amine to the lean amine recycles pump is pumped 
to the absorption tower, completing the recycling 
of the whole solution system.

Chemical reactions and feed gas specification 

Regarding the mass transfer rates, the reac-
tion rates of H2S with MDEA are practically im-
mediate. Contrarily, compared to the rate of mass 
transfer of CO2, the reaction rates of CO2 with 
MDEA are limited and slow. The kinetic selectiv-
ity for H2S is caused by this differential in reac-
tion rates Pacheco and Rochelle (1998). The ter-
tiary amine MDEA, having the chemical formula 
(C2H4OH)2NCH3, has a sluggish reaction with 
CO2 but a nearly immediate reaction with H2S. 
Principal process responses comprise: 
 • hydrogen sulfide and the reaction:

 (C2H4OH)2NCH3 + H2S ↔   

Figure 1. A schematic showing the use of an amine solvent during the sweetening process (Adib et al. 2013)
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 (C2H4OH)2NCH4 
+  +  HS (1)

 • the reaction with carbon dioxide: 
 (C2H4OH)2NCH3  + CO2  + H2O ↔   
 (C2H4OH)2NCH4 

+ + HCO3 (2)

However, the above two reactions are re-
versible. Moreover, Table 1 gives the com-
position of the natural gas obtained using gas 
chromatography.

ISSUES WITH GAS SWEETENING PLANTS

Gas sweetening units have numerous issues, 
some of which are brought on by inadequate 
knowledge of the relevant process parameters. 
With the aid of artificial neural network models, 
the problems can be predicted. Following is a list 
of some problems brought on by rich amine con-
ditions: Gas is not sweet, dirty degraded amine, 
excessive energy consumption, and excessive 
corrosion Rahmanpour et al. (2015).

MODELING USING ARTIFICIAL NEURAL 
NETWORKS

One of the artificial intelligence methods, 
known as an artificial neural network (ANN), was 
inspired by the neural networks in the human ner-
vous system (Agwu et al. 2020). Since the 1980s, 
artificial intelligence research has greatly benefited 
from the use of neural networks, which have sev-
eral applications in data processing, classification, 
performance approximation, and numerical con-
trol (Ram et al. 2019). Similar to how synapses 
interact in the brain, nodes in such networks’ math-
ematical structures stand in for neurons and lay-
ers for their interconnected layers. Since their con-
ception, ANNs have been widely accepted, yet, as 
computing power increased, ANNs began to earn 
more notoriety. This use has aided the ANN algo-
rithms’ scientific advancement, which began with 
single-layer perceptrons before switching to multi-
layer perceptrons; after that, the backpropagation 
algorithm was introduced, which led to many new 
types of ANNs (Anagnostis et al. 2020). 

Data collection

A good performance of the sweetening unit 
depends on the proper optimization of operat-
ing parameters (Pandey 2005). In this regard, 

five input key process parameters, H2S and CO2 
concentrations, temperature, pressure, and flow 
rate of input gases data, were collected from a lo-
cal refinery in Iraq over a one-year period. The 
raw dataset from this system consists of 243 data 
points sampled from February 2019 to February 
2020. The considered output parameters are H2S 
and CO2 concentrations after the gas sweetening 
process. The minimum and maximum values of 
each parameter and the units of measurement are 
shown in Table 2. The plant can process sour gas 
with 1.2 MMTPA of aromatics with eight trains 
of natural gas sweetening units (41 MMSCF/D). 
It has absorption and stripping towers and uses 
MDEA as a solvent.

Normalization and Implementation of ANN

Due to the slightly disparate scales of the dif-
ferent variables in the dataset, a min-max normal-
ization approach was applied to the training data 
to bring all features to the same scale. Normaliza-
tion is a crucial step in the control of bias in linear 
regression modeling. Regardless of how important 
a variable is to the prediction, if the scales of the 
two variables are substantially different, the regres-
sion analysis will be more heavily influenced by 
the item with the larger scale (Chawade et al. 2014, 
Al Jarrah 2022). Using Equation 3, the data were 

Table 1. Standard for feed gas gathered from a real 
operation plant in Iraq

Component Feed gas specification (mole 
%)

Nitrogen / Oxygen (N2/O2) 0.838215

Carbon dioxide (CO2) 5.334857

Hydrogen sulfide (H2S) 2.2

Methane (C1) 62.583378

Ethane (C2) 15.201929

Propane (C3) 8.210851

Iso Butane (I-C4) 1.067931

Normal Butane (N-C4) 2.86071

Neo Pentane (NEO-C5) 0.003401

Iso Pentane (I-C5) 0.758717

Normal Pentane (N-C5) 0.000696

Total Hexane (Total C6) 0.0758543

Total Heptane (Total C7) 0.043142

Total Octane (Total C8) 0.028211

Total Nonane (Total C9) 0.000907

Total Decane (Total C10) 0.000419

Total 100
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scaled and normalized to fit the transfer function 
in the hidden (i.e., sigmoid) and output layers (i.e., 
linear) (Rene et al. 2013).
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 – the normalized value; Xmin and Xmin 
are the minimum and maximum values of 
𝑋, respectively (Al Jarrah 2022).

In this paper, the neural network toolbox of 
MATLAB software was used to predict the H2S and 
CO2 concentrations of the gas sweetening process. 
Table 3 lists the parameters selected for the ANN 
model. The models were trained and tested using 
the dataset defining the procedure. In order to mini-
mize the loss, expressed as the Mean Squared Er-
ror (MSE) between predictions and actual values, 
the training objective was to identify the model’s 
internal parameters. Equation 4 was applied to the 
MSE calculations. Before starting the program, the 
dataset was loaded, shuffled, and split into training 
(70% of the dataset), validation (15% of the data-
set), and testing (15% of the dataset).
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where: n – the number of data sets for which the   
MSE is computed, Outexperimental – the value 
of the analyzed parameter obtained from 
the experimental work, Outpredicted – the 
ANN predicted value.

The number of hidden layers ranged from one 
to six hidden layers, and it is observed that increas-
ing the number of hidden layers improves the accu-
racy of the model prediction. However, it increases 
the computation time for learning drastically. 

Framework of ANN

The current study used the ANN approach to 
forecast the output parameters (H2S and CO2 con-
centrations) based on how input parameters op-
erate (temperature, pressure, flow rate, H2S, and 
CO2 concentrations). Figure 2 displays the multi-
layer feed-forward artificial neural network’s cre-
ated configuration.

Determining a training algorithm to utilize is 
the first step in creating the neural network mod-
el. Because it enables the network to adopt, the 

Table 2. The process input and output parameters

Process Parameters
Minimum Maximum

H2S CO2 H2S CO2

Inputs

Concentrations 12200 ppm 0.04 % 26600 ppm 4.72%

Temperature (0C) 13.5 48

Pressure (MPa) 0.37 2.15
Flow rate of input gases
(MMSCF/D) 7.34 37.9

Outputs Concentrations 0.04 ppm 0.04 % 9.5 ppm 4.72%

Table 3. Parameter settings for the ANN model

Parameters
Values

H2S CO2

Training data set 171

Testing data set 36

Validation data set 36

Number of hidden layers 1,2,3,4,5, and 6

Number of neurons in the hidden layer 5, 10,15, 20, 25, 30, 35, and 40

Activation function (hidden layer) Tansig

Activation function (output layer) Purelin

Number of epochs 1000

Learning rate 0.7

Architecture selection Trial-and-error

Target goal mean square error 0.0003



60

Ecological Engineering & Environmental Technology 2023, 24(2), 55–66

backpropagation network – a potent multilayer, 
feed-forward neural network was used in the cur-
rent study. They can train a network on a com-
mon set of input/output pairs and get good results 
without training the network on all possible input/
output pairs thanks to the backpropagation net-
work’s generalization characteristic. One or more 
hidden layers of sigmoid neurons, followed by an 
output layer of linear neurons, are common com-
ponents in feed-forward networks. The network 
can learn both linear and nonlinear relationships 
between input and output vectors thanks to its 
multiple layers of nonlinear transfer function neu-
rons. In contrast to the desired output, as shown 
during the training phase, Figure 3 displays the 
network’s actual output. As a result, the network’s 
weights were updated by propagating the result-
ing error backward. The proposed intelligent 
network can be utilized to provide an alternative 
method to predict the H2S and CO2 concentrations 
of the sweeting process.

Additionally, this intelligent approach predicts 
more quickly than traditional simulation param-
eters or even mathematical methods. As shown 
in Figure 4, the intelligent system is prepared to 
anticipate performance after training based on the 
learned learning parameters that have been saved. 
The training method normally consists of steps: 
(1) build the network object after putting together 

the training data; (2) prepare your network; (3) 
model the network’s reaction to fresh inputs. The 
steps that must be taken to build a suitable net-
work are shown in Figure 5.

RESULTS AND DISCUSSION

Function, number of neurons, and 
hidden layers for optimal training

In MATLAB, the ANN toolbox has differ-
ent backpropagation training algorithms. The 
feed-forward learning strategy is utilized in con-
junction with quick processing algorithms, such 
as TRAINBR, TRAINBFG, TRAINOSS, and 
TRAINLM, as a technique for numerical optimi-
zation. The MSE and R2 were used to compare. 
With the testing data, it was discovered that the 
training function TRAINLM produces the best 
results. The TRAINLM algorithm is an iterative 
technique for finding the minimum of a multi-
variate error function, expressed as the sum of 
squares of the difference between the actual and 
target outputs.

An ANN is made up of hundreds of single 
units, also known as artificial neurons or pro-
cessing elements, which are linked together by 
coefficients (weights) to construct the layers that 

Figure 2. An artificial neural network with multiple layers that are configured
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make up the neural structure. The interconnec-
tion of the neurons in a network is what gives 
brain calculations of their capacity. The ac-
curacy of the prediction produced depends on 
how well the neurons are interconnected in the 
networks. The transfer functions of a neural net-
work’s neurons, the learning rule, and the archi-
tecture itself all affect how active it is. Another 
illustration of a hidden layer in an ANN design 
is the layer that sits between the input and output 

layers. Therefore, the most important variables 
influencing predictive performance are the num-
ber of hidden layers and the number of neurons 
in each hidden layer. Most of the previous stud-
ies did not propose any criteria to find out the 
optimal number of neurons and hidden layers. 
The purpose of this study was to elucidate the 
significance of the number of neurons and hid-
den layers by addressing this topic. The size of 
neurons has changed thanks to the established 

Figure 3. The intelligent system’s initial training phase

Figure 4. The intelligent system’s testing phase
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Figure 6. Hidden layers and neurons’ eff ects on ANN models’ capacity to 
predict: (a) H2S concentration and (b) CO2 concentration

Figure 5. Flowchart summarizing the steps applied

a) b)
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Figure 7. Optimization of the training function, number of layers, and the hidden neurons 
of each architecture used to model and predict H2S and CO2 concentrations

ANN model (i.e., 5, 10, 15, 20, 25, 30, 35, and 
40). Additionally, the quantity of concealed lay-
ers has altered (i.e., 1 to 6). In ANN models, we 
adjusted the neurons and hidden layers until the 
performance was optimal. Figure 6 highlights 
the outcomes of trial and error to establish the 
ideal number of neurons. Where the number of 
hidden layers is changed gradually from 1 to 
six hidden layers. Hence, the results show that 
increasing the number of hidden layers reduces 
the MSE by increasing the time response of the 
training process. Moreover, the optimum num-
ber of neurons in the hidden layer aff ects the 
performance. It is apparent that increasing the 
number of neurons reduces the MSE. However, 
increasing the number of neurons to more than 
15 will not aff ect the performance in the degree 
of increasing the time, as illustrated in Figure 7. 
Moreover, the performance of selecting the opti-
mum number of the learning algorithm is crucial 
to improve the prediction process during testing. 
Moreover, the optimal ANN architecture for H2S 
and CO2 in this study is presented in Figure 8.

The ANN model’s eff ectiveness

Figure 9 shows the outcome of the training 
performance of the objective (H2S and CO2 con-
centrations) with the mean square error and the 
quantity of training network epochs. Once the 
lowest errors in the testing and verifi cation curves 

are almost identical based on the epoch numbers, 
the training is considered successful. As shown 
in Figure 9, the result of the H2S concentration of 
sweetening gas converged to a mean square error 
of 2.0023e-06 at the 252-iteration for the 5-15-2 
network architecture. Because of its greater abil-
ity to forecast outcomes for the aim of the gas 
sweetening process, the 5-15-2 design is there-
fore regarded as the ideal neural network for the 
current challenge (H2S and CO2 concentrations).
In addition, a comprehensive comparison to 
choose the best learning algorithm has been ac-
complished, and this study shows that the   Lev-
enberg Marquardt algorithm act perfectly during 
the training phase compared to other learning 
algorithms, as shown in Figure 10. According to 
indications, the training results meet the follow-
ing requirements: The testing curve and verifi ca-
tion curve are not substantially dissimilar from 
one another, the mean square error is low, and 
there was minimal overfi tting during the train-
ing phase. Moreover, Figure 11 shows the scatter 
plots of ANN predicted output sour gases concen-
trations (H2S and CO2) of the actual data obtained 
from the gas sweetening plant for the training, 
testing, and validation sets, and, generally, the 
overall model, respectively. The value is close to 
100 percent, which shows that the artifi cial neu-
ral network method used to create the prediction 
model performed very well.
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Figure 10. Comparison between diff erent learning algorithms (a) MSE and (b) R2

Figure 9. Performance of trained network for prediction of H2S and CO2 output concentrations

Figure 8. The obtained optimum structure of ANN architecture for 
prediction of H2S and CO2 output concentrations

a) b)
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Figure 11. Scatter plots of the developed ANN model of H2S and CO2 output concentrations

CONCLUSIONS

Because of the advantages to the environment, 
natural gas, which is now one of the major ener-
gy carriers, will play a larger role among energy 
sources in the future. The amine sweetening plant 
of a case study refi nery was simulated by ANN, 
and a model was used to simulate the absorption 
process. The model was validated through actual 
industrial data, and results showed that the model 
had high accuracy. This study demonstrates how 
ANN may be used to create precise prediction 
models for the operational variables of a natural 
gas sweetening plant for industrial use. In addition 
to the basic benefi ts indicated for ANN as an in-
put/output modeling tool, the projected data in this 
study demonstrated good accuracy performance 
from artifi cial neural networks. The developed 

ANN model was constructed using the best pos-
sible architecture, which included: 5-15-2 architec-
ture is considered the best neural network with one 
hidden layer for the specifi ed architecture.   The R2

was higher than 0.99 in the testing results, and the 
entire training had a low MSE of less than 0.0003, 
proving that ANN models can successfully predict 
the amounts of sour gases in a natural gas sweet-
ening facility. The pace of learning and prediction 
could be increased by integrating the generated 
ANN model with other optimization methods.
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