Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The mutual inductance model enables testing of the behavior of power transformers under different operation conditions, especially under the environmental influences on the transformer’s core. This paper presents the results of an investigation of the stress dependence of the magnetic relative permeability of a power transformer. It was observed that under tensile mechanical stresses up to 98 MPa applied to the core, the transformer input current amplitude increases by almost 67%, whereas the transformer’s reactive power increases by 53%. In industrial systems, such changes can potentially lead to unwanted power system shutdowns due to overloading. This effect should be considered during the development of critical power systems
Słowa kluczowe
Rocznik
Tom
Strony
13--21
Opis fizyczny
Bibliogr. 18 poz., rys.
Twórcy
autor
- Faculty of Mechatronics, Warsaw University of Technology, Poland
autor
- Łukasiewicz Research Network - Industrial Research Institute for Automation and Measurements PIAP, Poland
autor
- Faculty of Mechanical Engineering, Department of Physics, Kazimierz Pulaski Radom University, Poland
autor
- Department of Mechatronics, Robotics and Digital Manufacturing, Faculty of Mechanics, Vilnius Gediminas Technical University, Lithuania
Bibliografia
- [1] L. Cesky, F. Janicek, and J. Kubica et al., “Overheating of Primary and Secondary Coils of Voltage Instrument Transformers,” 2017 18th International Scientiϔic Conference on Electric Power Engineering (EPE), May 2017. doi: 10.1109/epe.2017.7967359.
- [2] K. Liu, “Intelligent Identification Method of Transformer Overheat Fault in Distribution Substation Based on Deep Learning Algorithm and Infrared Temperature Measurement Technology,” 2023 3rd International Conference on Electrical Engineering and Control Science (IC2ECS), Dec. 2023. doi: 10.1109/ic2ecs60824.2023.104 93404.
- [3] K. S. Kassi, I. Fofana, and F. Meghnefi et al., “Impact of Local Overheating on Conventional and Hybrid Insulations for Power Transformers,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 22, no. 5, pp. 2543–2553, Oct. 2015. doi: 10.1109/tdei.2015.005065.
- [4] C. Qingsong et al., “Analysis of Transformer Abnormal Heating Based on Infrared Thermal Imaging Technology,” 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2), Oct. 2018. doi: 10.1109/ei2.2018.8582496.
- [5] K. Furmanczyk and M. Stefanich, “Overview of Multiphase Power Converters for Aerospace Applications,” SAE Technical Paper Series, Nov. 2008. doi: 10.4271/2008-01-2878.
- [6] M. Yamamoto, T. Kakisaka, and J. Imaoka, “Technical Trend of Power Electronics Systems for Automotive Applications,” Japanese Journal of Applied Physics, vol. 59, no. SG, Apr. 2020. doi: 10.35848/1347-4065/ab75b9.
- [7] N. Leuning, S. Steentjes, and K. Hameyer, “Effect of Magnetic Anisotropy on Villari Effect in Non-oriented FESI Electrical Steel,”International Journal of Applied Electromagnetics and Mechanics, vol. 55, pp. 23–31, Oct. 2017. doi: 10.3233/jae-172254.
- [8] M. Yamagashira, S. Ueno, and D. Wakabayashi et al., “Vector Magnetic Properties and Two-Dimensional Magnetostriction of Various Soft Magnetic Materials,” International Journal of Applied Electromagnetics and Mechanics, vol. 44, nos. 3–4, pp. 387–400, Mar. 2014. doi: 10.3233/jae-141801.
- [9] E. Beyer, L. Lahn, and C. Schepers et al., “The Influence of Compressive Stress Applied by Hard Coatings on the Power Loss of Grain Oriented Electrical Steel Sheet,” Journal of Magnetism and Magnetic Materials, vol. 323, no. 15, pp. 1985–1991, Aug. 2011. doi: 10.1016/j.jmmm.2011.02.044.
- [10] K. Fonteyn, A. Belahcen, and A. Arkkio, “Properties of Electrical Steel Sheets under Strong Mechanical Stress,” Pollack Periodica, vol. 1, no. 1, pp. 93–104, Apr. 2006. doi: 10.1556/pollack. 1.2006.1.7.
- [11] P. Rȩkas et al., “A Measuring Setup for Testing the Mechanical Stress Dependence of Magnetic Properties of Electrical Steels,” Journal of Magnetism and Magnetic Materials, vol. 577, p. 170791, Jul. 2023. doi: 10.1016/j.jmmm.2023.70791.
- [12] P. Marketos, S. Zurek, and A. J. Moses, “A Method for Defining the Mean Path Length of the Epstein Frame,” IEEE Transactions on Magnetics, vol. 43, no. 6, pp. 2755–2757, Jun. 2007. doi: 10.1109/mag.2007.894124.
- [13] D.-X. Chen and Y.-H. Zhu, “Effective Magnetic Path Length in Epstein Frame Test of Electrical Steels,”Review of Scientiϔic Instruments, vol. 93, no. 5, May 2022. doi: 10.1063/5.0084859.
- [14] P. Rękas, T. Szumiata, and R. Szewczyk et al., “Influence of Mechanical Stresses Noncoaxial with the Magnetizing Field on the Relative Magnetic Permeability of Electrical Steel,” IEEE Transactions on Magnetics, vol. 60, no. 8, pp. 1–9, Aug. 2024. doi: 10.1109/tmag.2024.3418668.
- [15] T. Szumiata, P. Rekas, and M. Gzik-Szumiata et al., “The Two-Domain Model Utilizing the Effective Pinning Energy for Modeling the Strain-Dependent Magnetic Permeability in Anisotropic Grain-Oriented Electrical Steels,” Materials, vol. 17, no. 2, p. 369, Jan. 2024. doi: 10.3390/ma17020369.
- [16] EN 10107:2022 Grain-Oriented Electrical Steel Sheet and Strip Delivered in the Fully Processed State. doi: 10.3403/30092684.
- [17] “Mutual Inductor,” Mutual Inductor in Electrical Systems – MATLAB, https://www.mathworks.com/help/simscape/ref/mutualinductor.html (accessed Aug. 11, 2024).
- [18] “Simscape Electrical,” Simscape Electrical Documentation, https://www.mathworks.com/help/sps/index.html (accessed Aug. 11, 2024).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4a2032f3-3874-42e7-8aba-32311f76dbde
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.