Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
PCL (poly-ε-caprolactone) is a biocompatible and biodegradable polymer of aliphatic polyester group. However, PCL does not effectively bind to the bone in contrast to bioactive inorganic compounds such as wollastonite. For this wollastonite (WS) is regarded as a potential bioactive material for bone tissue engeenering although its main drawback is brittlennes. Therefore we synthesized polymer nanocomposite materials composed of poly-ε-caprolactone and wollastonite (PCL/wollastonite) containing either 0.5% or 5% of the latter modifying filler. And we aimed to verify biological properties of the nanocomposite PCL/WS materials, in comparison to the pure PCL, on cultures of osteoblast-like cells MG-63. The study revealed that the adherence of the osteoblast-like cells to the tested materials was enhanced by the PCL modification (PCL/5WS > PCL/0.5WS > PCL) while cell viability/proliferation was not altered. Furthermore, the activity of alkaline phosphatase indicative of osteoblast differentiation (maturation) was enhanced when the cells were cultured with either PCL/5WS or PCL/0.5WS. Overall, our results indicate that PCL-modified wollastonite improves biological properties of the basic biomaterial suggesting its potential usefulness/application for the bone tissue regeneration.
Czasopismo
Rocznik
Tom
Strony
11--14
Opis fizyczny
Bibliogr. 21 poz., wykr., zdj.
Twórcy
autor
- Department of Anatomy, Academy of Physical Education, Kraków, Poland
autor
- Department of Cytobiology, Jagiellonian University, Kraków, Poland
- Department of Biomaterials, AGH University of Science and Technology, Kraków, Poland
autor
- Department of Evolutionary Immunobiology, Jagiellonian University, Kraków, Poland
autor
- Department of Biomaterials, AGH University of Science and Technology, Kraków, Poland
autor
- Department of Biomaterials, AGH University of Science and Technology, Kraków, Poland
Bibliografia
- [1] D. Puppi, F. Chiellini, A.M. Piras, E. Chiellini. Polymeric materials for bone and cartilage repair. Prog in Polym Sci 35, 2010: 403-440.
- [2] J.F. Mano, R.A. Sousa, L.F. Boesel, N.M. Neves, R.L. Reis. Bioinert biodegradable and injectable matrix composites for hard tissue replacement: state of the art and recent developments. Comp Sci Technol 64, 2004: 789-817.
- [3] L. Shor, S. Guceri, X. Wen, M. Gandhi, W. Sun. Fabrication of three-dimensional polycaprolactone/hydroxiapatite tissue scaffolds and osteoblast-scaffolds interactions in vitro. Biomaterials 28, 2007: 5291-5297.
- [4] W. Xue, X. Liu, X.B. Zheng, C. Ding. In vivo evaluation plasma-sprayed wollastonite coating. Biomaterials 26, 2005: 3455-3460.
- [5] S. Ni, J. Chang, L. Chou, W. Zhai. Comparison of osteoblast-like cell responses to calcium silicate and tricalcium phosphate ceramics in vitro. J Biomed Mater Res B Appl Biomater 80, 2007: 174-183.
- [6] J. In-Kook, S. Ju-Ha, C. Won-Yong, K. Yong-Hang, K. Hyoun-Ee, K. Hae-Won. Porous hydroxyapatite scaffold coated with bioactive apatite-wollastonite glass-ceramics. J Am Ceram Soc 90, 2007: 2703-2708.
- [7] N. Sahai, A. Michel. Cyclic silicate active site an stereochemical match for apatite nucleation on pseudowollastonite bioceramic-bone interfaces. Biomaterials 26, 2005: 5763-5770.
- [8] P. Siriphannon, Y. Kameshima, A. Yasumor, K. Okada, S. Hayashi. Formation of hydroxyapatite on CaSiO3 powders in simulated body fluid. J Eur Ceram Soc 22, 2002: 511-520.
- [9] Y. Imori, Y. Kameshima, K. Okada, S. Hayashi. Comparative study of apatite formation on CaSiO3 ceramics in stimulated body fluids with different carbonate concentrations. J Mater Sci Mater Med 16, 2005: 73-79.
- [10] A. El-Ghannam, P. Ducheyne, I.M. Shapiro. Formation of surface reaction products on bioactive glass and their effects on the expression of the osteoblastic phenotype and the deposition of mineralized extrecellular matrix. Biomaterials 18, 1997: 295-303.
- [11] X. Liu, C. Ding. Phase compositions and microstructure of plasma-sprayed wollastonite coating. Surf Coat Technol 141, 2001: 269-274.
- [12] W. Xue, C. Ding. Plasma sprayed wollastonite/TiO2 composite coatings on titanium alloys. Biomaterials 23, 2002: 4065-4077.
- [13] W. Xue, X. Liu, X. Zheng, C. Ding. Dissolution and mineralization of plasma sprayed wollastonite coatings with different crystallinity. Surf Coat Technol 200, 2005: 2420-2427.
- [14] Y. Acil H. Terheyden, A. Dunsche, B. Fleiner, S. Jepsen. Three-dimensional cultivation of human osteoblast-like cells on highly porous natural bone mineral. J Biomed Mater Res 51, 2000: 703-710.
- [15] S. Ni, J. Chang, L. Chou. A novel bioactive porous CaSiO3 scaffold for bone tissue engineering. J Biomed Mat Res 76 A, 2006: 196-205.
- [16] J. Wei, F. Chen, J.W. Shin, H. Hong, C. Dai, J. Su. Preparation and characterization of bioactive mesoporous wollastonite-polycaprolactone composite scaffolds. Biomaterials 30, 2009: 1080-1088.
- [17] P.E. Ketting, M.J. Oursler, K.E. Wiegand, S.K. Bonde, T.C. Spelsberg, B.L. Riggs. A increases proliferation, differentiation, and transforming growth factor β production in normal adult human osteoblast-like cells in vitro. J Bone Miner Res, 7, 1992: 1281-1289.
- [18] I.D. Xynos, A.J. Edgar, L.D.K. Buttery, L.L. Hench, J.M. Polak. Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass 45S5 dissolution. J Biomed Mater Res 55, 2001: 151-157.
- [19] J. Sun, L. Wei, X. Liu, J. Li, B. Li, G. Wang, F. Meng. Influences of ionic dissolution products of dicalcium silicate coating on osteoblastic proliferation, differentiation and gene expression. Acta Biomat 5, 2009: 1284-1293.
- [20] N.N. Ali, J. Rower, N.M. Reich. Constitutive expression of non-bone, liver/ kidney alkaline phosphatase in human osteocarcoma cell lines. J Bone Miner Res 11, 1996: 512-520.
- [21] T. Matsuda, J.E. Davies. The in vitro response of osteoblasts to bioactive glass. Biomaterials 8, 1987: 275-284.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4a2009ce-0a06-4da5-9893-8c55764af27f