Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
Studies on biocompatibility of AISI 316LVM steel indicate the need to eliminate the nickel from the surface and replace it with other elements of improved biocompatibility. Therefore, in the presented work selected physicochemical and mechanical properties of the diffusive nitrocarburized layer formed by plasma potential by means of an active screen made of the Fe-Cr-Ni were studied. In the paper we present results of microstructure and phase composition of the layers, roughness, and surface wettability, potentiodynamic pitting corrosion resistance, penetration of ions into the solution as well as mechanical properties. The studies were conducted for the samples of both mechanically polished and nitrocarburized surfaces, after sterilization, and exposure to the Ringer’s solution. Deposition of the nitrocarburized layer increased the contact angle, surface roughness, surface hardness, and corrosion resistance with respect to the polished surfaces. The nitrocarburized layer is a barrier against the ions release into the solution and sterilization and exposure to Ringer solution. The obtained results showed beneficial increase of both mechanical and electrochemical properties of the deposited layer, and thus the applicability of the proposed method of surface treatment of the 316 LVM steel for short-term implants after sterylization.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1257--1266
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
autor
- Silesian University of Technology, Faculty of Biomedical Engineering, 40 Roosevelta Str., 41-800 Zabrze, Poland
autor
- Silesian University of Technology, Faculty of Biomedical Engineering, 40 Roosevelta Str., 41-800 Zabrze, Poland
autor
- Silesian University of Technology, Faculty of Biomedical Engineering, 40 Roosevelta Str., 41-800 Zabrze, Poland
autor
- Silesian University of Technology, Faculty of Mining and Geology, 2 Akademicka Str., 44-100 Gliwice, Poland
autor
- Silesian University of Technology, Faculty of Biomedical Engineering, 40 Roosevelta Str., 41-800 Zabrze, Poland
autor
- Warsaw University of Technology, Faculty of Materials Science and Engineering, Woloska 141 Str., 02-507 Warszawa, Poland
autor
- Warsaw University of Technology, Faculty of Materials Science and Engineering, Woloska 141 Str., 02-507 Warszawa, Poland
Bibliografia
- [1] K. H. Lo, C. H. Shek, Mat. Sci. Eng. R. 65, 39-104 (2009).
- [2] P. Boillot, J. Peultier, Procedia Engineering 83, 309-321 (2014).
- [3] J. Marciniak, Biomateriały. Wydawnictwo Politechniki Śląskiej, Gliwice 2013 (in polish).
- [4] C. X . Li, T. Bell, Corros. Sci. 46, 1527-1547 (2004).
- [5] A. Krauze, A. Ziębowicz, J. Marciniak, J. Mater. Process. Tech. 162-163, 209-214 (2005).
- [6] A. Kajzer, W. Kajzer, J. Dzielicki, D. Matejczyk, Acta Bioeng. Biomech. 17, 2, 35-44 (2015).
- [7] W. Walke, Z. Paszenda, T. Pustelny, Z. Opilski, S. Drewniak, M. Kościelniak-Ziemniak, M. Basiaga, Mat. Sci. and Eng. C 63, 155-163 (2016).
- [8] W. Walke, Z. Paszenda, M. Basiaga, P. Karasiński, M. Kaczmarek, EIS study of SiO2 Oxide Film on 316L stainless steel for cardiac implants. Information Technologies in Biomedicine. Advances in Intelligent Systems and Computing 284, Springer (2014).
- [9] W. Kajzer, A. Kajzer, M. Grygiel-Pradelok, A. Ziębowicz, B. Ziębowicz, Evaluation of physicochemical properties of TiO2 layer on AISI 316 LVM stainless steel intented for urology. Advances in Intelligent Systems and Computing 471, Springer International Publishing (2016).
- [10] L. Orellana-Martínez, F. J. Pérez, C. Gómez, Surf. Coat. Tech. 200, 1609-1615 (2005).
- [11] A. Kajzer, O. Grzeszczuk, W. Kajzer, K. Nowińska, M. Kaczmarek, M. Tarnowski, T. Wierzchoń, Acta Bioeng. Biomech. 19, 4, 181-188 (2017).
- [12] J. Baranowska, B. Arnold, Surf. Coat. Tech. 200, 6623-6628 (2006).
- [13] T. Borowski , B. Adamczyk-Cieślak, A. Brojanowska, K. Kulikowski, T. Wierzchoń, Mat. Sci. Medziagotyra. 21, 3, 376-381 (2015).
- [14] Z. Cheng, C. X . Li, H. Dong, T. Bell, Surf. Coat. Tech. 191, 195-200 (2005).
- [15] L. Shen, L. Wang, J. Xu, Surf. Coat. Tech. 228, 456-459 (2013).
- [16] R. R. M. de Sousa, F. O. de Araújo, L. C. Gontijo, J. A. P. da Costa, Jr. C. Alves, Vacuum 86, 2048-2053 (2012).
- [17] M. Ossowski, T . Borowski, M. Tarnowski, T. Wierzchoń, Mat. Sci. Medziagotyra. 22, 1, 25-30 (2016).
- [18] M. Basiaga, W. Walke, M. Staszuk, W. Kajzer, A. Kajzer, K. Nowińska, Arch. Civ. Mech. Eng. 17, 32-42 (2017).
- [19] T. Czerwiec, H. He, G. Marcos, T. Thiriet, S. Weber, H. Michel, Plasma Process Polym. 6, 401-409 (2009).
- [20] C. Blawert, H. Kalvelage, B. L Mordike, et al, Surf. Coat. Tech. 136, 181-187 (2001).
- [21] M. F. Fewell, D. R. G. Mitchell, et al, Surf. Coat. Tech. 131, 300-306 (2000).
- [22] L. C. Xu, Biomaterials. 28, 3273-3283 (2007).
- [23] M. Houmarda, E. H. M. Nunesb, D. C. L. Vasconcelosb, G. Berthoméc, J. C. Joudc, M. Langletd, W. L. Vasconcelosba, Appl. Surf. Sci. 289, 218-223 (2014).
- [24] E. Sobolewska, B. Frączak, S. Błażewicz, K. Seńko, M. Lipski, Protet. Stomatol. 6, 401-406 (2009).
- [25] Y. Jiang, Y. Bao, K . Yang, Surf. Coat. Tech. 269, 324-328 (2015).
- [26] I. Lee, A. Barua, Sur f. Coat. Tech. 307, 1045-1052 (2016).
- [27] J. Liu, H. Dong, J. Buhagiar, C. F. Song, B. J. Yu, L. M. Qian, Z. R. Zhou, Wear. 271, 1490-1496 (2011).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4a1fc37a-a08c-4720-8acf-6748aeaa5191