PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Quantitative changes in near-channel landslides caused by fluvial erosion in the light of high-resolution DEM

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article deals the issue of near-channel landslide activity in two regions (Rożnowskie Foothills and Beskid Niski Mountains) in the Polish Outer Carpathians. The main objective of the research was to determine the volume of material removed from the studied landslides in the period from their occurrence to 2012 and to compare these results with the volume of material removed from landslides during the period of detailed research in 2014–2017. The ALS data was used to prepared to the DoDs analysis DoD analysis with theoretical landslide surfaces and to determine the volume of material removed from the occurrence of landslides to 2012. Detailed TLS surveys (10 measurement series) were carried out from April 2014 to November 2017, resulting in nine Digital Elevation Models (DEMs) of Difference (DoDs), illustrating quantitative and spatial changes within the investigated landslides. It was found that near-channel landslides, under the influence of ongoing fluvial erosion, exhibit continuous activity with varying intensity, depending on the hydrometeorological conditions. During flood events, the movements within the entire landslide area were activated. Conversely, in periods between floods, there was a constant removal of material from the toe of the landslides. During flood events, the material carried away by streams accounted for 60% to 90% of the volume of material removed throughout the research period. The volume of material removed from the landslide in 4 years of survey ranges from 14 to 107% of the material removed from the landslide since its occurrence to 2012.
Rocznik
Strony
3--50
Opis fizyczny
Bibliogr. [44] poz., rys., tab., wykr.
Twórcy
  • Institute of Geography and Spatial Organization Polish Academy of Sciences 31-018 Kraków, św Jana 22
Bibliografia
  • Abellán A., Jaboyedoff M., Oppikofer T., Vilaplana J.M., 2009. Detection of millimetric deformation using a terrestrial laserscanner: experiment and application to a rockfall event. Natural Hazards and Earth System Sciences 9, 365–372.
  • Betts H.D., Trustrum N.A., De Rose R., 2003. Geomorphologic changes in a complex gully system measured from sequential Digital elevation models, and implications for management. Earth Surface Processes and Landform 28, 1043–1058.
  • Bober L., 1984. Rejony osuwiskowe w polskich Karpatach fliszowych i ich związek z budową geologiczną region. Biuletyn Instytutu Geologicznego 340, 115–158, (in Polish).
  • Caputa J., Gorczyca E., 2021. The role of landslides in the evolution of a small mountain river valley (Polish Carpathians). Episodes 44, 227–239.
  • Cebulski J., 2018. Zastosowanie analizy DoD do oceny ilości usuniętego materiału osuwiska przez potok. [in:] W. Bochenek, M. Kijowska-Strugała (eds.), Zintegrowany Monitoring Środowiska Przyrodniczego. Ocena funkcjonowania i kierunków zmian środowiska przyrodniczego Polski na podstawie badań stacjonarnych. Biblioteka Monitoringu Środowiska 32, Stacja Badawcza IGiPZ PAN, Szymbark, 83–88, (in Polish).
  • Cebulski J., 2022. Impact of river erosion on variances in colluvial movement and type for landslides in the Polish Outer Carpathians. Catena, 217, https://doi.org/10.1016/j. catena.2022.106415.
  • Costa J.E., Schuster R., 1988. The formation and failure of natural dams. Geological Society of America Bulletin 100, 1054–1068.
  • Crozier M.J., 1986. Landslides: Causes, consequences and environment. Croom Helm, London.
  • Cucchiaro S., Cazorzi F., Marchi L., Crema S., Beinat A., Cavalli M., 2019. Multi-temporal analysis of the role of check dams in a debris-flow channel: Linking structural and functional connectivity. Geomorphology 345, 106844, DOI:10.1016/j.geomorph.2019.106844
  • Dauksza L., Kotarba A., 1973. An analysis of the influence of fluvial erosion in the development of a landslides slope (using the application of the queueing theory). Studia Geomorphologica Carpatho-Balcanica 7, 91–109.
  • Fuller I.C., Riedler R.A., Bell R., Marden M., Glade T., 2016. Landslide-driven erosion and slope–channel coupling in steep, forested terrain, Ruahine Ranges, New Zealand 1946–2011. Catena 142, 252–268. DOI:10.1016/j.catena.2016.03.019
  • Fidelus-Orzechowska, J., Wrońska-Wałach, D., Cebulski, J., Żelazny, M., 2018. Effect of the construction of ski runs on changes in relief in a mountain catchment (Inner Carpathians, Southern Poland). Science of Total Environment 630, 1298–1308, https://doi.org/10.1016/j. scitotenv.2018.02.305.
  • Gil E., 1997, Meteorological and hydrological conditions of landslides, Polish Flysh Carpathians. Studia Geomorphologica Carpatho-Balcanica 31, 143–158.
  • Gil E., Długosz M., 2006. Threshold values of rinfalls triggering selected deep-seated landslides in the Polish Flysch Carpathians. Studia Geomorphologica Carpatho-Balcanica 40, 21–43.
  • Gil E., Kotarba A., 1977. Model of slide slope evolution in flysch mountains (An example drawn from the Polish Carpathians). Catena 4, 3, 233–248.
  • Hancock H., Prokop P., Eckerstorfer M., Hendrikx J., 2018. Combining high spatial resolution snow mapping and meteorological analyses to improve forecasting of destructive avalanches in Longyearbyen, Svalbard. Cold Regions Science and Technology 154, 120–132.
  • Hendrickx H., De Sloover L., Stal C., Delaloye R., Nyssen J., Frankl A., 2020. Talus slope geomorphology investigated at multiple time scales from high- resolution topographic surveys and historical aerial photographs (Sanetsch Pass, Switzerland). Earth Surface Processes and Landforms 45, 3653–3669.
  • Harvey A.M., 2002, Effective timescales of coupling within fluvial systems, Geomorphology, 44, 175–201.
  • Jaboyedoff M., Abellán A., Derron M.H., Loye A., Metzger R., Pedrazzini A., 2012. Use of LIDAR in landslide investigations: a review. Natural Hazards 61, 5–28.
  • Jones K.E., Preston N.J., 2012. Spatial and temporal patterns of off-slope sedyment delivery for small catchments subject to shallow landslides within the Waipaoa catchment, New Zealand. Geomorphology 141-142, 150–159.
  • Kopciowski R., Zimnal Z., Jankowski L., 2014. Objaśnienie do Szczegółowej Mapy Geologicznej Polski 1:50 000, arkusz 1038 - Osiek Jasielski. CAG Warszawa, (in Polish).
  • Korup O., 2004. Landslide dam. [in:] A. Goudie (ed.), Encyclopedia of geomorphology. Routlege, London, p. 1156.
  • Kukulak J., Augustowski K., 2016. Landslides on river banks in the western part of Podhale (Central Carpathians, Poland). Geological Quarterly 60, 561–571.
  • Lévy S., Jaboyedoff M., Locat J., Demers D., 2012. Erosion and channel change as factors of landslides and valley formation in Champlain Sea Clays: The Chacoura River, Quebec, Canada. Geomorphology 145-146, 12–18.
  • Marciniec P., Zimnal Z., Nescieruk P., 2014. Objaśnienia do Szczegółowej Mapy Geologicznej Polski 1:50 000, arkusz Wojnicz – 1000. CAG Warszawa, (in Polish).
  • Marciniec P., Zimnal Z., Wojciechowski T., Perski Z., Rączkowski W., Laskowicz I., Nescieruk P., Grabowski D., Kułak M., Wójcik A., 2019. Osuwiska w Polsce – od rejestracji do prognozy, czyli 13 lat projektu SOPO. Przegląd Geologiczny 67, 5, 291–297, (in Polish).
  • Margielewski W., 2006. Structural control and types of movements of rock mass in anisotropic rocks: case studies in the Polish Flysch Carpathians. Geomorphology 77, 1-2, 47–68.
  • McColl S.T., Holdsworth C., Massey C., 2017. Movement of a large, slow-moving landslide in the North Island, New Zealand, controlled by porewater pressure and river flow. EGU General Assembly Conference Abstracts, 19.
  • Oppikofer, T., Jaboyedoff, M., Blikra, L., Derron, M.-H., Metzger, R., 2009. Characterization and monitoring of the Åknes rockslide using terrestrial laser scanning. Nat. Hazards Earth Syst. Sci. 9, 1003–1019, https://doi.org/10.5194/nhess-9-1003-2009.
  • Oszczypko, N., Ślączka, A., Żytko, K., 2008. Regionalizacja tektoniczna Polski – Karpaty zewnętrzne i zapadlisko przedkarpackie. Przegląd Geologiczny 56, 927–935, (in Polish).
  • Płaczkowska E., Cebulski J., Bryndza M., Mostowik K., Murawska M., Rzonca B., Siwek J., 2021. Morphometric analysis of the channel heads based on different LiDAR resolutions. Geomorphology 375, 107546, DOI:10.1016/j.geomorph.2020.107546
  • Rączkowska Z., Cebulski J., Rączkowski W., Wojciechowski T., Perski Z., 2018. Using TLS for monitoring talus slope morphodynamics in the Tatra Mts. Studia Geomorphologica Carpatho-Balcanica 51-52, 179–198.
  • Rączkowski W., 2007. Landslide hazard in the Polish flysh Carpathians. Studia Geomorphologica Carpatho-Balcanica 41, 61–76.
  • Rączkowski W., Mrozek T., 2002. Activating of landsliding in the Polish Flysch Carpathians by the end of the 20th century. Studia Geomorphologica Carpatho-Balcanica 36, 91–111.
  • Refice A., Bovenga, F., Wasowski, J., Guerriero, L., 2000. Use of InSAR data for landslide monitoring: a case study from southern Italy. [in:] IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. 2504–2506. https://doi.org/10.1109/ IGARSS.2000.859621.
  • Starkel L., 1996. Geomorphic role of extreme rainfalls in the Polish Carpathians. Studia Geomorphologica Carpatho-Balcanica 30, 21–38.
  • Strzelecki M.C., Duszyński F., Tyszkowski S., Zbucki L., 2022. Limestone Sea Stacks (Rauks) Record Past Sea Levels and Rocky Coast Evolution in the Baltic Sea (Gotland and Fårö Islands, Sweden). Frontiers in Earth Science 10, 895419, DOI:10.3389/feart.2022.895419
  • Soldati M., Barrows T.T., Prampolini M., Fifield K.L., 2018. Cosmogenic exposure dating constraints for coastal landslide evolution on the Island of Malta (Mediterranean Sea). Journal of Coastal Conservation 22, 831–844.
  • Stumvoll M.J., Schmaltz E. M,. Glade T., 2021. Dynamic characterization of a slow-moving landslide system – Assessing the challenges of small process scales utilizing multi-temporal TLS data. Geomorphology 389, https://doi.org/10.1016/j.geomorph.2021.107803
  • Travelletti J., Malet J.P., 2012. Characterization of the 3D geometry of flow-like landslides: A methodology based on the integration of heterogeneous multi-source data. Engineering Geology 128, 30–48.
  • Tyszkowski S., Cebulski J., 2019. Practical aspects of landslides surveys using terrestrial laser scanning in diverse geomorphological terrains: case studies from Polish Carpathians and Lower Vistula Valley. Zeitschrift für Geomorphologie 62, 2, 107–124.
  • Ventura G., Vilardo G., Terranova V., Bellucci Sessa E., 2011. Tracking and evolution of complex active landslides by multi-temporal airborne LiDAR data: The Montaguto landslide (Southern Italy). Remote Sensing of Environment 115, 12, DOI:10.1016/j.rse.2011.07.007
  • Wistuba M., Malik I., Wójcicki K., Michałowicz P., 2015. Coupling between landslides and eroding stream channels reconstructed from spruce tree rings (examples from the Carpathians and Sudetes-Central Europe). Earth Surface Processes and Landforms 40, 293–312.
  • Yenes M., Monterrubio S., Nespereira J., Santos G., Fernández-Macarro B., 2015. Large landslides induced by fluvial incision in the Cenozoic Duero Basin (Spain). Geomorphology 246, 263–276.
  • Ziętara T., 1968. Rola gwałtownych ulew i powodzi w modelowaniu rzeźby Beskidów. Prace Geograficzne Instytutu Geografii PAN 60, 5–116, (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4a1bdb17-9194-4bff-a019-a582d762faf6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.