PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Machine Learning-Based Prediction of Biogas Production from Sludge Characteristics in Four Anaerobic Digesters: Development of the AD2Biogas Prediction Tool

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One of the alternative ways to obtain low-cost energy is to use biogas generated by the digestion process from sewage sludge. This paper presents an analysis of the processes in four anaerobic digesters (AD) - A, B, C and D. The study analyzed the amount of biogas produced in each digester tank and compared them with each other. Using data sets consisting of parameters relating to the pre-sludge and surplus sludge diverted to each tank, the effect of the proportion of these parameters on biogas production efficiency was studied. Based on this data, several models using different machine learning techniques were built and compared, which can be used to support the biogas production optimization process. A free convenient web tool written in Python language - AD2Biogas Predictor Tool - was also given away for sewage treatment plants to conveniently estimate the predicted amount of biogas produced on a given day using the implemented models. The main objective of the study is to understand how the studied parameters affect the efficiency of the process and identify potential optimization strategies, as well as to propose a model for biogas yield prediction based on sludge characteristics. The result of the study is to contribute to increasing the efficiency of sludge management in wastewater treatment plants and increasing biogas production, both in the form of developed models and a software tool.
Twórcy
  • Rzeszow University of Technology, The Faculty of Electrical and Computer Engineering, Department of Complex Systems, ul. MC Skłodowskiej 8, 35-036 Rzeszów
  • Rzeszow University of Technology, Faculty of Civil and Environmental Engineering and Architecture, Department of Environmental Engineering and Chemistry, Powstańców Warszawy 6, 35-959 Rzeszow, Poland
  • Rzeszow University of Technology, The Faculty of Electrical and Computer Engineering, Department of Complex Systems, ul. MC Skłodowskiej 8, 35-036 Rzeszów
  • Rzeszow University of Technology, The Faculty of Electrical and Computer Engineering, Department of Complex Systems, ul. MC Skłodowskiej 8, 35-036 Rzeszów
  • Miejskie Przedsiębiorstwo Wodociągów i Kanalizacji Sp. z o.o. w Rzeszowie, ul. Naruszewicza 18, 35-055 Rzeszów, Poland
  • Rzeszow University of Technology, Faculty of Mechanical and Technological Engineering, Department of Computerization and Robotization of Industrial Processes, Kwiatkowskiego 4, 37-450 Stalowa Wola, Poland
  • Rzeszow University of Technology, The Faculty of Electrical and Computer Engineering, Department of Complex Systems, ul. MC Skłodowskiej 8, 35-036 Rzeszów
Bibliografia
  • 1. Wicki L, Naglis-Liepa K, Filipiak T, Parzonko A, Wicka A. Is the production of agricultural biogas environmentally friendly? Does the structure of consumption of first- and second-generation raw materials in Latvia and Poland matter? Energies. 2022; 15(15): 5623.
  • 2. Kougias PG, Angelidaki I. Biogas and its opportunities—a review. Frontiers of Environmental Science & Engineering. 2018; 12:1–12.
  • 3. Dabrowska S, Masłon A. The use of biogas from the anaerobic digestion of sewage sludge to improve the energy balance of wastewater treatment plants. Czasopismo Inżynierii Lądowej.
  • 4. Bharathiraja B, Sudharsana T, Jayamuthunagai J, Praveenkumar R, Chozhavendhan S, Iyyappan J. Biogas production–a review on composition, fuel properties, feedstock and principles of anaerobic digestion. Renewable and Sustainable Energy Reviews. 2018; 90(April): 570–582.
  • 5. Masłon A, Czarnota J, Szczyrba P, Szaja A, Szulżyk- Cieplak J, Łagód G. Assessment of energy self-sufficiency of wastewater treatment plants—a case study from Poland. Energies. 2024; 17(5): 1164.
  • 6. Masłon A, Czarnota J, Szaja A, Szulżyk-Cieplak J, Łagód G. The enhancement of energy efficiency in a wastewater treatment plant through sustainable biogas use: Case study from Poland. Energies. 2020; 13(22): 6056.
  • 7. Myszograj S, Sadecka Z, Bochenski D, Suchowska-Kisielewicz M. Green energy from biogas in a Polish-German sewage treatment plant. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 2013; 35(13): 1249–1255.
  • 8. Szczyrba P, Masłon A, Czarnota J, Olszewski K. Analiza gospodarki osadowej i biogazowoenergetycznej w oczyszczalni ścieków w Opolu. Inżynieria Ekologiczna. 2020; 21(2): 26–34.
  • 9. Masłon A. An analysis of sewage sludge and biogas production at the Zamość WWTP. In: Blikharskyy Z, Koszelnik P, Mesaros P, editors. Proceedings of CEE 2019. Cham: Springer International Publishing; 2020; 291–298.
  • 10. Piechota G, Iglinski B. Biomethane in Poland—current status, potential, perspective and development. Energies. 2021; 14(6).
  • 11. Owczuk M, Wardzińska D, Zamojska-Jaroszewicz A, Matuszewska A. Wykorzystanie odpadów biodegradowalnych do produkcji biogazu jako alternatywnego źródła energii odnawialnej. Studia Ecologiae et Bioethicae. 2013; 11(3): 133–144.
  • 12. Ismail ZZ, Jasim HS. Biogas recovery from refinery oily sludge by co-digestion followed by sustainable approach for recycling the residual digestate in concrete mixes. Advances in Science and Technology Research Journal. 2022; 16(5): 178–191.
  • 13. Wójcik M, Łukasz B, Stachowicz F. Unconventional materials from sewage sludge with a potential application in road construction. Advances in Science and Technology Research Journal. 2018; 12(4): 65–75.
  • 14. Kosiński P, Kask B, Franus M, Piłat-Rożek M, Szulżyk-Cieplak J, Łagód G. The possibility of using sewage sludge pellets as thermal insulation. Advances in Science and Technology Research Journal. 2023; 17(2): 161–172.
  • 15. Koryś KA, Latawiec AE, Grotkiewicz K, Kubon M. The review of biomass potential for agricultural biogas production in Poland. Sustainability. 2019; 11(22).
  • 16. Marks S, Dach J, Fernandez Morales FJ, Mazurkiewicz J, Pochwatka P, Gierz Ł. New trends in substrates and biogas systems in Poland. Journal of Ecological Engineering. 2020; 21(4).
  • 17. Bachmann N, la Cour Jansen J, Bochmann G, Montpart N. Sustainable biogas production in municipal waste-water treatment plants. IEA Bioenergy. 2015; 20.
  • 18. Gu Y, Li Y, Li X, Luo P, Wang H, Wang X, Wu J, Li F. Energy self-sufficient wastewater treatment plants: Feasibilities and challenges. Energy Procedia. 2017; 105: 3741–3751.
  • 19. Gu Y, Li Y, Li X, Luo P, Wang H, Robinson ZP, Wang X, Wu J, Li F. The feasibility and challenges of energy self-sufficient wastewater treatment plants. Applied Energy. 2017; 204: 1463–1475.
  • 20. Sarpong G, Gude VG. Near future energy self-sufficient wastewater treatment schemes. International Journal of Environmental Research. 2020; 14(4): 479–488.
  • 21. Neczaj E, Grosser A. Circular economy in wastewater treatment plant–challenges and barriers. Proceedings. 2018; 2: 614.
  • 22. Piwowar A. Agricultural biogas—an important element in the circular and low-carbon development in Poland. Energies. 2020; 13(7): 1733.
  • 23. Szymańska D, Lewandowska A. Biogas power plants in Poland—structure, capacity, and spatial distribution. Sustainability. 2015; 7(12): 16801–16819.
  • 24. Ruszel M, Maslon A, Ogarek P. Analysis of biogas from sewage sludge digestion in terms of diversification in the natural gas production structure in Poland. Desalination Water Treat. 2021; 232: 298–307.
  • 25. Durdević D, Blecich P, Jurić Z. Energy recovery from sewage sludge: The case study of Croatia. Energies. 2019; 12(10): 1927.
  • 26. Chamber of Commerce “Polish Waterworks” (IGWP). Information materials. 2020. Available online: https:// www.igwp.org.pl/ (accessed on 12 June 2020).
  • 27. Szymańska D, Lewandowska A. Biogas power plants in Poland—structure, capacity, and spatial distribution. Sustainability. 2015; 7(12): 16801–16819.
  • 28. Vindis P, Mursec B, Janzekovic M, Cus F. The impact of mesophilic and thermophilic anaerobic digestion on biogas production. Journal of Achievements in Materials and Manufacturing Engineering. 2009; 36(2): 192–198.
  • 29. Gandiglio M, Lanzini A, Soto A, Leone P, Santarelli M. Enhancing the energy efficiency of wastewater treatment plants through co-digestion and fuel cell systems. Frontiers in Environmental Science. 2017; 5: 70.
  • 30. Lafratta M, Thorpe RB, Ouki SK, Shana A, Germain E, Willcocks M, Lee J. Dynamic biogas production from anaerobic digestion of sewage sludge for on-demand electricity generation. Bioresource Technology. 2020; 310: 123415.
  • 31. Lafratta M, Thorpe RB, Ouki SK, Shana A, Germain E, Willcocks M, Lee J. Demand-driven biogas production from anaerobic digestion of sewage sludge: Application in demonstration scale. Waste and Biomass Valorization. 2021; 12(12): 6767–6780.
  • 32. Abdel daiem MM, Hatata A, Galal OH, Said N, Ahmed D. Prediction of biogas production from anaerobic co-digestion of waste activated sludge and wheat straw using two-dimensional mathematical models and an artificial neural network. Renewable Energy. 2021; 178: 226–240.
  • 33. Kannah RY, Rohini KB, Gunasekaran M, Gokulakrishnan K, Kumar G, Banu JR. Prediction of effective substrate concentration and its impact on biogas production using artificial neural networks in hybrid upflow anaerobic sludge blanket reactor for treating landfill leachate. Fuel. 2022; 313: 122697.
  • 34. Abu Qdais H, Bani Hani K, Shatnawi N. Modeling and optimization of biogas production from a waste digester using artificial neural network and genetic algorithm. Resources, Conservation and Recycling. 2010; 54(6): 359–363.
  • 35. Galdino de Oliveira LR, dos Santos Filho DA, Marques Fraga TJ, Thomé Jucá JF, da Motta Sobrinho MA. Kinetics assessment and modeling of biogas production by anaerobic digestion of food wastes and acclimated sewage sludge. Journal of Material Cycles and Waste Management. 2021; 23(4): 1646–1656.
  • 36. Prask H, Fugol M, Dyjakon A, Głab L, Sowiński J, Whitaker A. The impact of sewage sludge-sweet sorghum blends on the biogas production for Energy purposes. Energies. 2023; 16(5).
  • 37. Babel S, Sae-Tang J, Pecharaply A. Anaerobic codigestion of sewage and brewery sludge for biogas production and land application. International Journal of Environmental Science & Technology. 2009; 6: 131–140.
  • 38. Abu Qdais H, Bani Hani K, Shatnawi N. Modeling and optimization of biogas production from a waste digester using artificial neural network and genetic algorithm. Resources, Conservation and Recycling. 2010; 54(6): 359–363.
  • 39. Wang L, Long F, Liao W, Liu H. Prediction of anaerobic digestion performance and identification of critical operational parameters using machine learning algorithms. Bioresource Technology. 2020; 298: 122495.
  • 40. Tufaner F, Demirci Y. Prediction of biogas production rate from anaerobic hybrid reactor by artificial neural network and nonlinear regressions models. Clean Technologies and Environmental Policy. 2020; 22: 713–724.
  • 41. Beltramo T, Klocke M, Hitzmann B. Prediction of the biogas production using GA and ACO input features selection method for ANN model. Information Processing in Agriculture. 2019; 6(3): 349–356.
  • 42. Cruz IA, Chuenchart W, Long F, Surendra KC, Andrade LRS, Bilal M, Liu H, Figueiredo RT, Khanal SK, Ferreira LFR. Application of machine learning in anaerobic digestion: Perspectives and challenges. Bioresource Technology. 2022; 345: 126433.
  • 43. Breiman L. Random forests. Machine Learning. 2001; 45: 5–32.
  • 44. Geurts P, Ernst D, Wehenkel L. Extremely randomized trees. Machine Learning. 2006; 63: 3–42.
  • 45. Breiman L. Bagging predictors. Machine Learning. 1996; 24: 123–140.
  • 46. AD2Biogas Online Tool. https://ad2b.tools.prz.edu. pl. Accessed: 2024-06-16.
  • 47. Gugała Ł, Łaba K., Dul M. Protecting web applications from authentication attacks. Advances in Web Development Journal. 2023; 1(1).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4a0b92b0-8ab7-4d88-b899-cc6ae8ff2916
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.