PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Discrete element modeling of powder metallurgy processes

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The proposed doctoral dissertation presents a numerical and experimental analysis of manufacturing of new materials by powder metallurgy techniques. The scope of the thesis includes three main parts: • formulation of an original numerical model of powder metallurgy, • simulations of hot pressing for dierent combinations of process parameters, • verication of the numerical model based on own experimental results. The main part of the doctoral dissertation is dedicated to the theoretical and numerical investigations. An original numerical model of a powder metallurgy process has been formulated and implemented within the discrete element framework. The proposed model allows to study the motion (shrinkage and rearrangement) of powder particles during compaction and sintering stage and takes into account the growth of cohesive necks. In order to verify, calibrate and validate the numerical model, several simulations of hot pressing and sintering process have been performed. Numerical results have shown the correct representation of the density, shrinkage and densication rate of sintered specimens for dierent combination of process parameters. Validation of numerical model has been brought by performance of own experimental studies, which refers to manufacture the intermetallic NiAl, ceramic Al2O3 and NiAl-Al2O3 composite specimens and characterization of its mechanical and microstructural properties. Further numerical studies have comprised evaluation of micro- and macroscopic stresses during and after powder metallurgy process. The results presented in this thesis have shown that the developed original discrete element model is an eective and suitable tool to analysis phenomenon occurring during the powder metallurgy process. Numerical model allows to study the material mechanism both at microscopic (such as a rearrangement and interaction of powder particles) and macroscopic scale (such as shrinkage, material densication or macroscopic stress). Presented results allow to the conclude that the new discrete element model can be applied to development and optimization of powder metallurgy processes.
PL
Niniejsza rozprawa doktorska przedstawia numeryczną oraz doświadczalną analizą procesu wytwarzania materiałów technikami metalurgii proszków. Zakres pracy badawczej obejmuje trzy główne punkty: • opracowanie oryginalnego modelu procesów metalurgii proszków, • symulacje jednoosiowego prasowania na gorąco przy różnych kombinacjach parametrów procesu, • weryfikację modelu numerycznego za pomocą własnych badań doświadczalnych. Główną częścią rozprawy są badania o charakterze teoretycznym i numerycznym. W ramach pracy doktorskiej został opracowany oraz zaimplementowany oryginalny model elementów dyskretnych. W celu weryfikacji, kalibracji oraz walidacji modelu numerycznego przeprowadzono szereg symulacji numerycznych. Wyniki z symulacji wskazuj¡ na prawidłowe działanie modelu, poprawne odwzorowanie prędkości zagęszczania i skurczu próbki.Walidacja modelu numerycznego została przeprowadzona za pomocą własnych badań eksperymentalnych, które polegały na wytworzeniu szeregu próbek intermetalicznych NiAl, ceramicznych Al2O3 oraz kompozytowych NiAl/Al2O3 wraz z charakteryzacją właściwości mechanicznych i mikrostrukturalnych. Dalsze badania numeryczne dotyczy ły analizy naprężeń generowanych w czasie procesu spiekania oraz naprężeń resztkowych po procesie wytwarzania. Wyniki zawarte w niniejszej rozprawie doktorskiej pokazują, że opracowany w ramach metody elementów dyskretnych model jest efektywnym narzędziem do modelowania procesu metalurgii proszków. Pozwala badać mechanizmy procesu na poziomie zarówno mikro- (przegrupowanie i oddziaływanie ziaren w trakcie prasowania i spiekania) jak i makroskopowym (skurcz, zagęszczanie materiału oraz naprężenia makroskopowe). Na tej podstawie mo»na stwierdzić, że przedstawiony model może być wykorzystywany do projektowania i optymalizacji procesów metalurgii proszków.
Rocznik
Tom
Strony
1--183
Opis fizyczny
Bibliogr. 245 poz., rys., tab.
Twórcy
autor
  • Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk
Bibliografia
  • 1. I. Chang and Y. Zhao. Advances in Powder Metallurgy. Properties, Processing and Applications. Woodhead Publishing, 2013.
  • 2. P. Ramakrishnan. Automotive applications of powder metallurgy. In Advances in Powder Metallurgy. Properties, Processing and Applications, Eds. by I. Chang, Y. Zhao, Woodhead Publishing, 2013.
  • 3. M.N. Rahaman. Ceramic Processing And Sintering. Marcel Dekker Inc., II edition, 2003.
  • 4. J.W. Kaczmar, K. Pietrzak, and W. Włosiński. The production and application of metal matrix composite materials. Journal of Materials Processing Technology, 106:58-67, 2000.
  • 5. J.M. Missiaen. Modelling of sintering: recent developments and perspectives. Rev. Met. Paris, (12):1009-1019, 2002.
  • 6. H.E. Exner and T. Kraft. Review on computer simulations of sintering processes. In Powder Metallurgy World Congress 1998, volume 2, pages 278-283, EPMA, Shrewsbury, U.K., 1998.
  • 7. D. Gendron. Edtude numérique et expérimentale du frittage a l'echelle du grain. PhD thesis, L'Universite Bordeaux I, 2001.
  • 8. J. Pan. Modelling sintering at di erent length scales. International Materials Reviews, 2(17):69-85, 2003.
  • 9. P.Z. Cai, D.J. Green, and G.L. Messing. Constrained densification of alumina/ zirconia hybrid laminates, I: Experimental observations of processing defects. Journal of the American Ceramic Society, 80:1929 1939, 1997.
  • 10. B. Zhang and M. Gasik. Stress evolution in graded materials during densi cation by sintering processes. Computational Materials Science, 25:264-271, 2002.
  • 11. M. Gasik and B. Zhang. A constitutive model and fe simulation for the sintering process of powder compacts. Computational Materials Science, 18:93-101, 2000.
  • 12. K. Shinagawa and Y. Hirashima. A constitutive model for sintering of mixed powder compacts. Mater. Sci. Forum, 42:1041-1046, 1999.
  • 13. H. G. Kim, O. Gilla, and D. Bouvard. A phenomenological constitutive model for sintering of alumina powder. J. Euro. Ceram. Soc., 23:1675-1685, 2003.
  • 14. O. Gillia and D. Bouvard. Phenomenological analysis of densification kinetics during sintering: application to wc-co mixture. Materials Science and Engineering A, 279(1-2):185 - 191, 2000.
  • 15. M. Abouaf, J.L. Chenot, G. Raisson, and P. Bauduin. Finite element simulation of hot isostatic pressing of metal powders. International Journal for Numerical Methods in Engineering, 25:191-212, 1988.
  • 16. J.M. Duva and P.D. Crow. The densi cation of powders by power-law creep during hot isostatic pressing. Acta Metall. Mater., 40:31-35, 1992.
  • 17. A.C.F. Cocks. Inelastic deformation of porous materials. J. Mech. Phys. Solids, 37(6):693-715, 1989.
  • 18. P. Sofronis and R.M. McMeeking. Creep of power-law material containing spherical voids. ASME J Appl Mech, 59:S88-S95, 1992.
  • 19. P. Ponte Castañeda. The effective mechanical properties of nonlinear isotropic composites. J. Mech. Phys. Solids, 39:45-71, 1991.
  • 20. E.A. Olevsky. Theory of sintering: From discrete to continuum. Mater Sci Eng R, 23:41-100, 1998.
  • 21. A.C.F. Cocks. Constitutive modelling of powder compaction and sintering. Prog Mater Sci, 46:201-229, 2001.
  • 22. R.M. German. Sintering theory and practice. Wiley, New York, 1996.
  • 23. R.M. German. Critical overview of sintering computer simulations. In V. Arnhold, C.L. Chu, W.F. Jandeska, and H.I. Sanderow, editors, Advances in Powder Metallurgy & Particulate Materials, Part 9 - Modeling, pages 1-15. MPIF, Princeton, 2002.
  • 24. G.W. Scherer. Sintering inhomogeneous glasses: Application to optical waveguides. J. Non-Crystalline Solids, 34:239-256, 1979.
  • 25. A. Jagota and P.R. Dawson. Micromechanical modeling of powder compacts Unit problems for sintering and traction induced deformation. Acta Metall., 36:2551-2573, 1988.
  • 26. R.M. McMeeking and L.T. Kuhn. A diffusional creep law for powder compacts. Acta Metall., 40:961-969, 1992.
  • 27. J. Svoboda and H. Riedel. New solutions describing the formation of interparticle necks in solid-state sintering. Acta Metall., 43:1-10, 1995.
  • 28. J. Svoboda, H. Riedel, and H. Zipse. Equilibrium pore surfaces, sintering stresses and constitutive equations for the intermediate and late stages of sintering - Part I: Computation of equilibrium surfaces. Acta Metall., 42:435-443, 1994.
  • 29. H. Riedel and D.Z. Sun. Simulation of die pressing and sintering of powder metals, hard metals and ceramics. In J.L. Chenot, R.D. Wood, and O.C. Zienkiewicz, editors, Numerical Methods in Industrial Forming Processes, Numiform 92, pages 883-886. A.A. Balkema, Rotterdam, 1998.
  • 30. H. Riedel, V. Kozák, and J. Svoboda. Densification and creep in the final stage of sintering. Acta Metall., 42:3093-3103, 1994.
  • 31. H. Riedel, H. Zipse, and J. Svoboda. Equilibrium pore surfaces, sintering stresses and constitutive equations for the intermediate and late stages of sintering, 2: Diffusional densification and creep. Acta Metall. Mater., 42:445-452, 1994.
  • 32. H. Riedel and B. Blug. A comprehensive model for solid state sintering and its application to silicon-carbide. In J.W. Rudnicki T.J. Chuang, editor, Multiscale Deformation and Fracture in Materials and Structures: The J.R. Rice 60th Anniversary Volume, Solid Mechanics and Its Application, Vol. 84, pages 49-70. Kluwer Academic Publishers, Dordrecht, 2001.
  • 33. H.A. Häggblad and W.B. Li. A micro mechanical based constitutive model for finite element simulation of hot isostatic pressing of powder. Comput. Meth. Appl. Mech. Eng., 128:191-198, 1995.
  • 34. H. Matsubara. Computer simulations for the design of microstructural developments in ceramics. Computational Materials Science, 14:125-128, 1999.
  • 35. M.P. Anderson, G.S. Grest, R.D. Doherty, Kang Li, and D.J. Srolovitz. Inhibition of grain growth by second phase particles: Three dimensional Monte Carlo computer simulations. Scripta Metallurgica, 23(5):753-758, 1989.
  • 36. Q. Yu and S.K. Esche. A Monte Carlo algorithm for single phase normal grain growth with improved accuracy and efficiency. Computational Materials Science, 27(3):259 - 270, 2003.
  • 37. M. Morhac and E. Morhacova. Monte Carlo simulation algorithms of grain growth in polycrystalline materials. Crystal Research and Technology, 35(1):117-128, 2000.
  • 38. R.B. Potts. Some generalized order-disorder transformations. Mathematical Proceedings of the Cambridge Philosophical Society, 48(01):106-109, 1952.
  • 39. G.N. Hassold, I-W. Chen, and D.J. Srolovitz. Computer simulation of nal-stage sintering: I, Model kinetics, and microstructure. Journal of the American Ceramic Society, 73(10):2857 2864, 1990.
  • 40. J. Pan and A.C.F. Cocks. A numerical technique for the analysis of coupled surface and grain-boundary diffusion. Acta Mater., 43:1395-1406, 1995.
  • 41. J. Pan, A.C.F. Cocks, and S. Kucherenko. Finite element formulation of coupled grain-boundary and surface diffusion with grain-boundary migration. Proc. Roy. Soc., London A, 453:2161-2184, 1997.
  • 42. J. Pan, H. Le, S. Kucherenko, and J.A. Yeomans. A model for the sintering of spherical particles of di erent sizes. Acta Mater., 46:4671-4690, 1998.
  • 43. J. Frenkel. Viscous ow of crystalline bodies under the action of surface tension. J. Phys. USSR, 9:385-391, 1945.
  • 44. G.C. Kuczynski. Self diffusion in sintering of metallic particles. Metal Trans., 185:169-178, 1949.
  • 45. W.D. Kingery and M. Berg. Study of the initial stages of sintering of solids by viscous ow, evaporation-condensation and self-diffusion. J. Appl. Phys., 26:1205-1212, 1955.
  • 46. R.L. Coble. Sintering of Crystalline Solids. I. Intermediate and Final State Diffusion Models. J. Appl. Phys., 32:787-792, 1961.
  • 47. J.K. McKenzie and R. Shuttleworth. A phenomenological theory of sintering. Proc. Phys. Soc. B, 62:833-852, 1949.
  • 48. M.F. Ashby. A first report on sintering diagrams. Acta Metall., 22:275-289, 1974.
  • 49. E. Arzt. The influence of an increasing particle coordination on the densification of spherical powders. Acta Metall., 30:1883-1890, 1982.
  • 50. H.E. Exner and E. Arzt. Sintering processes. In R.W. Cahn and P. Haasen, editors, Physical Metallurgy, volume 30, pages 2628 2662. Elsevier Science, 1996.
  • 51. M.R. Zachariah and M.J. Carrier. Molecular dynamics computation of gas-phase nanoparticle sintering: a comparison with phenomenological models. Journal of Aerosol Science, 30:1139-1151, 1999.
  • 52. H. Zhu and R.S. Averback. Molecular dynamics simulations of densification process in nanocrystalline materials. Materials Science and Engineering A, A204(1-2):96-100, 1995.
  • 53. Z. Huilong and R.S. Averback. Sintering processes of two nanoparticles: a study by molecular-dynamics simulations. Phil. Mag. Let., 73(1):27-33, 1996.
  • 54. P. Zeng, S. Zajac, P.C. Clapp, and J.A. Rifkin. Nanoparticle sintering simulations. Materials Science and Engineering, A252:301-306, 1998.
  • 55. K. Kadau, P. Entel, and P.S. Lomdahl. Molecular-dynamics study of martensitic transformations in sintered Fe-Ni nanoparticles. Computer Physics Communications, 147:126-129, 2002.
  • 56. E. Olevsky, V. Tikare, and T. Garino. Multi-scale study of sintering: A review. Journal of the American Ceramic Society, 89(6):1914-1922, 2006.
  • 57. L. Jing and O. Stephansson. Fundamentals of discrete element methods for rock engineering: theory and applications. Elsevier, 2007.
  • 58. F. Parhami and R.M. McMeeking. A network model for initial stage sintering. Mechanics of Materials, 27:111-124, 1998.
  • 59. C.L. Martin, L.C.R. Schneider, L. Olmos, and D. Bouvard. Discrete element modeling of metallic powder sintering. Scripta Materialia, 55:425-428, 2006.
  • 60. B. Henrich. Partikelbasierte Simulationsmethoden in Pulvertechnologie und Nanofluidik. PhD thesis, Albert-Ludwigs- Universität Freiburg im Breisgau, 2007.
  • 61. S. Luding, K. Manetsberger, and J. Müllers. A discrete model for long time sintering. Journal of Mechanics and Physics of solids, 53:455-491, 2005.
  • 62. R.M. Kadushnikov, V.V. Skorokhod, I.G. Kamenin, V.M. Alievskii, E.Yu. Nurkanov, and D.M. Alievskii. Theory and technology of sintering, heat, and chemical heat-treatment processes computer simulation of spherical particle sintering. Powder Metallurgy and Metal Ceramics, 40(3-4):154- 163, 2001.
  • 63. L. Olmos, C.L. Martin, and D. Bouvard. Sintering of mixtures of powders: Experiments and modelling. Powder Technology, 190:134-140, 2009.
  • 64. B. Henrich, A. Wonisch, T. Kraft, M. Moseler, and H. Riedel. Simulations of the influence of rearrangement during sintering. Acta Materialia, 55:753-762, 2007.
  • 65. A. Wonisch, T. Kraft, M. Moseler, and H. Riedel. Effect of different particle size distributions on solid-state sintering: A microscopic simulation approach. J. Am. Ceram. Soc., 92:1428-1434, 2009.
  • 66. A. Wonisch, O. Guillon, T. Kraft, M. Moseler, H. Riedel, and J. Rodel. Stress-induced anisotropy of sintering alumina: Discrete element modelling and experiments. Acta Materialia, 55:5187-5199, 2007.
  • 67. T. Rasp, Ch. Jamin, A. Wonisch, T. Kraft, and O. Guillon. Shape distortion and delamination during constrained sintering of ceramic stripes: Discrete element simulations and experiments. J. Am. Ceram. Soc, 95:586-592, 2012.
  • 68. C.L. Martin and R.K. Bordia. The e ect of a substrate on the sintering of constrained films. Acta Materialia, 57:549-558, 2009.
  • 69. L. Olmos, Ch.L. Martin, D. Bouvard, D. Bellet, and M. Di Michiel. Investigation of the sintering of heterogeneous powder systems by synchrotron microtomography and discrete element simulation. J. Am. Ceram. Soc., 92:1492-1499, 2009.
  • 70. Ch.L. Martin, H. Camacho-Montes, L. Olmos, D. Bouvard, and R. K. Bordia. Evolution of defects during sintering: Discrete element simulations. J. Am. Ceram. Soc.,, 92:1435-1441, 2009.
  • 71. L.C.R. Schneider, C.L. Martin, Y. Bultel, D. Bouvard, and E. Siebert. Discrete modelling of the electrochemical performance of SOFC electrodes. Electrochimica Acta, 52:314-324, 2006.
  • 72. L.C.R. Schneider, C.L. Martin, Y. Bultel, L. Dessemond, and D. Bouvard. Percolation effects in functionally graded SOFC electrodes. Electrochimica Acta, 52:3190-3198, 2007.
  • 73. J. Liu and N.Jones. Experimental investigation of clamped beams struck transversely by a mass. Int. J. Impact Eng., 6:303-335, 1987.
  • 74. S. Martin, M. Guessasma, J. Léchelle, J. Fortin, K. Saleh, and F. Adenot. Simulation of sintering using a non smooth discrete element method. Application to the study of rearrangement. Computational Materials Science, (84):31-39, 2014.
  • 75. Chao Wang and Shaohua Chen. Application of the complex network method in solid-state sintering. Computational Materials Science, 69(0):14 - 21, 2013.
  • 76. X. Liu, C. L. Martin, G. Delette, J. Laurencin, D. Bouvard, and T. Delahaye. Microstructure of porous composite electrodes generated by the discrete element method. Journal of Power Sources, 196:2046-2054, 2011.
  • 77. P.C. Angelo and R. Subramanian. Powder Metallurgy: Science, Technology and Applications. Prentice-Hall of India Pvt.Ltd, 2008.
  • 78. J. Song. Experiments, modelling and numerical simulation of the sintering process for metallic or ceramic powders. PhD thesis, Shanghai Jiaotong University, Shanghai, China, 2007.
  • 79. J. Lis and R. Pampuch. Spiekanie. Wydawnictwo AGH, Kraków (In Polish), 2000.
  • 80. M. Chmielewski, S. Nosewicz, J. Rojek, S. Mackiewicz, K. Pietrzak, and B. Romelczyk. A study of densification and microstructure evolution during hot pressing of NiAl/Al2O3 composite. Advanced Composite Materials, 24(1):57-66, 2015.
  • 81. S. Nosewicz, J. Rojek, S. Mackiewicz, M. Chmielewski, K. Pietrzak, and B. Romelczyk. The influence of hot pressing conditions on mechanical properties of nickel aluminide/alumina composite. Journal of Composite Materials, 48(29):3577-3589, 2014.
  • 82. M. Chmielewski, S. Nosewicz, K. Pietrzak, J. Rojek, A. Strojny-Nędza, S. Mackiewicz, and J. Dutkiewicz. Sintering behavior and mechanical properties of NiAl, Al2O3 and NiAl- Al2O3composites. Journal of Materials Engineering and Performance, 23(11):3875-3886, 2014.
  • 83. K. Morsi. Review: reaction synthesis processing of Ni-Al intermetallic materials. Materials Science and Engineering A, 299:1-15, 2001.
  • 84. K. Matsuura, T. Kitamutra, and M. Kudoh. Microstructure and mechanical properties of NiAl intermetallic compound synthesized by reactive sintering under pressure. Journal of Materials Processing Technology, 63:293- 302, 1997.
  • 85. T. Chmielewski and D. A. Golanski. New method of in-situ fabrication of protective coatings based on Fe-Al intermetallic compounds. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 225(B4):611-616, 2011.
  • 86. R. Darolia. Ductility and fracture toughness issues related to implementation of NiAl for gas turbine applications. Corrosion Science, 8:1321-1327, 2000.
  • 87. D. Kalinski, M. Chmielewski, K. Pietrzak, and K. Choregiewicz. An in uence of mechanical mixing and hot-pressing on properties of NiAl/ Al2O3 composite. Archives of Metallurgy and Materials, 57:695-702, 2012.
  • 88. R.G. Munro. Evaluated material properties for a sintered α-alumina. J. Am. Ceram. Soc., 80[8]:1919-28, 1997.
  • 89. P. Patnaik. Handbook of Inorganic Chemicals. McGraw-Hill, 2002.
  • 90. J.H. Westbrook and R.L. Fleischer. Intermetallic Compounds, Volume 3 - Structural Applications of Intermetallic Compounds. John Wiley and Sons, 2000.
  • 91. D. Kalinski, M. Chmielewski, and M. Kozlowski. NiAl matrix composites modified by ceramic particles addition. Composites theory and practice, 3:97-102, 2005.
  • 92. A. Michalski, J. Jaroszewicz, M. Rosinski, and D. Siemiaszko. NiAl-Al2O3 composites produced by pulse plasma sintering with the participation of the SHS reaction. Intermetallics, 14:603 606, 2006.
  • 93. M.M. Moshksar, H. Doty, and R. Abbaschian. Grain growth in NiAl- Al2O3 in situ composites. Intermetallics, 5:393-399, 1997.
  • 94. D. Tingaud and F. Nardou. Influence of non-reactive particles on the microstructure of NiAl and NiAl-Zro2 process by thermal explosion. Intermetallics, 16:732-737, 2008.
  • 95. M. Chmielewski and K. Pietrzak. Processing, microstructure and mechanical properties of Al2O3-Cr nanocomposite. Journal of the American Ceramic Society, 27(2-3):1273-1279, 2007.
  • 96. M. Chmielewski, J. Dutkiewicz, D. Kalinski, L. Litynska-Dobrzynska, K. Pietrzak, and A. Strojny-Nedza. Microstructure and properties of hot-pressed molybdenum-alumina composites. Archives of Metallurgy and Materials, 57(3):687-693, 2012.
  • 97. W.H. Tuan. The effect of Al2O3 addition on the milling behavior of NiAl powder. Journal of Materials Engineering and Performance, 7:613-616, 1998.
  • 98. W.H. Tuan. Toughening alumina with nickel aluminide inclusions. Journal of the European Ceramic Society, 20:895-899, 2000.
  • 99. A. Kitaoka, K. Hirota, M. Yoshinaka, Y. Miyamoto, and O. Yamaguchi. Toughening and strengthening of NiAl with Al2O3 by the addition of ZrO2(3Y). J. Am. Ceram. Soc., 83:1311--13, 2000.
  • 100. C.L. Hsieh, W.H. Tuan, and T.T. Wu. Elastic behaviour of a model two phase material. Journal of the European Ceramic Society, 24:3789-3793, 2004.
  • 101. C.L. Hsieh and W.H. Tuan. Elastic properties of ceramic - metal particulate composites. Materials Science and Engineering A, 393:133-139, 2005.
  • 102. M. R. Ghomashchi. Al2O3 reinforced Al/Ni intermetallic matrix composite by reactive sintering. J Mater Sci, 30:2849-2854, 1995.
  • 103. W.H. Tuan and Y.P. Pai. Mechanical properties of Al2O3 -NiAl composites. J. Am. Ceram. Soc., 82:1624--26, 1999.
  • 104. Z. Witczak and S. Dymek. Effectivness of dispersion strengthening in the NiAl intermetallic alloy produced by self - sustaining high - temperature synthesis. Archives of Metallurgy and Materials, 54:747-753, 2009.
  • 105. A. Upadhyay, R. S. Beniwal, and R. Singh. Elastic properties of Al2O3 - NiAl: a modified version of Hashin-Shtrikman bounds. Continuum Mech. Thermodyn, 24:257-266, 2012.
  • 106. ISO. 2738, Sintered metal materials, excluding hardmetals – Permeable sintered metal materials - Determination of density, oil content and open porosity. 1999.
  • 107. EN623-2. Advanced technical ceramics. Monolithic ceramics. General and textural properties. Determination of density and porosity. 1993.
  • 108. E. Gregorova, Z. Zivcova, and W. Pabst. Porosity and pore space characteristics of starch-processed porous ceramics. J Mater Sci, 41:6119-6122, 2006.
  • 109. T.M. Besmann, J.C. McLaughlin, and H-T. Lin. Fabrication of ceramic composites: forced cvi. Journal of Nuclear Materials, 219:31-35, 1995.
  • 110. Y.P. Kwan and J. R. Alcock. The impact of water impregnation method on the accuracy of open porosity measurements. Journal of Materials Science, 37(12):2557-2561, 2002.
  • 111. H.A. Bruck, Y.M. Shabana, B. Xu, and J. Laskis. Evolution of elastic mechanical properties during pressureless sintering of powder-processed metals and ceramics. J Mater Sci, 42:7708-7715, 2007.
  • 112. B.A. Auld. Acoustic Fields and Waves in Solids. John Wiley and Sons, New York, London, Sydney, Toronto, 1973.
  • 113. International Society for Rock Mechanics. Commission on Standardization of Laboratory and Field Tests. Suggested methods for determining tensile strength of rock materials. Int. J. Rock Mech. Min. Sci., 15:99-103, 1978.
  • 114. ASTM. D3967-95a, Standard test method for splitting tensile strength of intact rock core specimens. 1996.
  • 115. J.R. Capua Proveti and G. Michot. The brazilian test: a tool for measuring the toughness of a material and its brittle to ductile transition. Int. J. Fract., 139:455-460, 2006.
  • 116. M. Hangl, A. Börger, R. Danzer, and H.M. Luxner. Application of the brazilian disc test for strength measurements on ceramic green bodies. Fracture Mechanics of Ceramics, 13:159-167, 2002.
  • 117. I. Doltsinis and F. Osterstock. Modelling and experimentation on the strength of porous ceramics. Arch. Comput. Meth. Engng, 12:303-336, 2005.
  • 118. A. Börger, P. Supancic, and R. Danzer. Optimization of the Brazilian Disc Test for ceramic materials, in Ceramic Materials and Components for Engines (eds J. G. Heinrich and F. Aldinger). Wiley-VCH Verlag GmbH, Weinheim, Germany, 2007.
  • 119. R. Pampuch, K. Haberko, and M. Kordek. Nauka o procesach ceramicznych. Wydawnictwo Naukowe PWN, Warsaw (In Polish), 1992.
  • 120. X. Xiaoping, Y. Wuwen, and R.M. German. Densi cation and strength evolution in solid-state sintering. J. Mater. Sci., 37:567-575, 2002.
  • 121. A.P. Roberts and E.J. Garboczi. Elastic properties of model porous ceramics. Journal of the American Ceramic Society, 83:3041 3048, 2000.
  • 122. A.P. Roberts and E.J. Garboczi. Computation of the linear elastic properties of random porous materials with wide variety of microstructure. The Proceedings of the Royal Society of London, Series A - Mathematical, Physical and Engineering Sciences, 458:1033-1054, 2002.
  • 123. S. Mackiewicz. Theoretical model for calculation of elastic coefficients of composite materials based on polycrystalline diamond and cubic boron nitride. In Proceedings of AMAS Workshop, Nondestructive Testing of Materials and Structures II, Warsaw, 2003.
  • 124. E. Ryshkewitch. Compression strength of porous sintered alumina and zirconia. J Am Ceram Soc, 36:65-68, 1953.
  • 125. E.A. Olevsky, G.A. Shoales, and R.M. German. Temperature e ect on strength evolution under sintering. Materials Research Bulletin, 36(3-4):449-459, 2001.
  • 126. K.M. Uhl, B. Lucht, H. Jeong, and D.K. Hsu. Mechanical Strength Degradation of Graphite Fiber Reinforced Thermoset Composites Due to Porosity, in Review of Progress in Quantitative Nondestructive Evaluation (eds D. O. Thompson and D. E. Chimenti). Springer US, 1988.
  • 127. C.Y. Wu, S.M. Best, A.C. Bentham, B.C. Hancock, and W. Bon eld. A simple predictive model for the tensile strength of binary tablets. European Journal of Pharmaceutical Sciences, 25:331-336, 2005.
  • 128. M.E. Cura, J. Lagerbom, R. Ritasalo, J. Syren, J. Lotta, O. Soderberg, T. Ritvonen, E. Turunen, and S.-P. Hannula. Process parameter optimization of pulsed electric current sintering of recycled WC-8Co powder. Estonian Journal of Engineering, 15:255-265, 2009.
  • 129. W. Weglewski, M. Basista, M. Chmielewski, and K. Pietrzak. Modelling of thermally induced damage in the processing of Cr- Al2O3 composites. Composites Part B, 43(2):255-264, 2012.
  • 130. S. Nosewicz, J. Rojek, K. Pietrzak, and M. Chmielewski. Viscoelastic discrete element model of powder sintering. Powder Technology, (246):157-168, 2013.
  • 131. P.A. Cundall. A computer model for simulating progressive, large scale movements in blocky rock systems. Proc. Int. Symp. Rock Fracture, 1, 1971.
  • 132. B.C. Burman. A numerical approach to the mechanics of discontinua. Ph.D. Thesis. University of North Queensland, 1971.
  • 133. P.A. Cundall. Adaptive density-scaling for time-explicit calculations. Proc. 4th Int. Conf. on Numerical Methods in Geomechanics, 1982.
  • 134. P.A. Cundall. Formulation of a three-dimensional distinct element model - Part I: A scheme to detect and represent contacts in a system composed of many polyhedral blocks. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 25, 1988.
  • 135. B.A. Chappel. The mechanics of blocky material. Ph.D. Thesis. Australia National University, 1972.
  • 136. B.A. Chappel. Numerical and physical experiments with discontinua. Proc. 3rd Cong. ISRM, 2A, 1974.
  • 137. R.J. Byrne. Physical and numerical model in rock and soil-slope stability. Ph.D. Thesis. James Cook University of North Queensland, 1974.
  • 138. P.A. Cundall and O.D.L. Strack. A discrete numerical method for granular assemblies. Geotechnique, 29:47 65, 1979.
  • 139. P.A. Cundall and O.D.L. Strack. The development of constitutive laws for soil using the distinct element method. In: Wittke, W. (ed.). Numerical methods in geomechanics, 1979.
  • 140. P.A. Cundall and O.D.L. Strack. Report to NSF concerning grant ENG 76-20711, Part II. Dept. Civ. Engng, University of Minnesota, 1979.
  • 141. J.R. Williams, G. Hocking, and G.G.W. Mustoe. The theoretical basis of the discrete element method. Numerical Methods in Engineering, Theory and Application, Conf. in Swansea, Balkema Publishers, 1985.
  • 142. J.R. Williams and G.G.W. Mustoe. Modal methods for the analysis of discrete systems. Computers and Geotechnics, 4, 1987.
  • 143. G. Shi. Discontinuous deformation analysis - a new numerical model for statics and dynamics of block systems. Ph.D. Thesis. University of California, 1988.
  • 144. G. Shi and R.E. Goodman. Discontinuous deformation analysis - a new method for computing stress, strain, and sliding of block systems. In: Cundall, P. A., Sterling, R. L. and Star eld, A. M. (eds), Key questions in mechanics. Proc. of the 29th US Symp. on Rock Mechanics, University of Minnesota 1988.
  • 145. R. Barbosa and J. Ghaboussi. Discrete finite element method. 1st US Conf. on Discrete Element Methods, 1989.
  • 146. R. Kacanauskas, L. Tumonis, and A. Džiugys. Simulation of the normal impact of randomly shaped quasi-spherical particles. Granular Matter, 16(3):339-347, 2014.
  • 147. P.A. Cundall and R.D. Hart. Numerical modeling of discontinua. J. Eng. Comp., 9, 1992.
  • 148. P.W. Cleary. Large scale industrial dem modeling. Engineering Computations, 21, 2004.
  • 149. P.W. Cleary. The effect of particle shape on simple shear ows. Powder Technology, 179, 2008.
  • 150. O. Pouliquen and F. Chevoir. Dense flows of dry granular matterial. Comptes Rendus Physique, 3:163-175, 2002.
  • 151. O.R.Walton. Particle dynamics calculations of shear ow. In J.T. Jenkins, M. Satake, editors, Mechanics of Granular Materials: New Models and Constitutive Relations. Elsevier, 1983.
  • 152. J. Rojek. Discrete element modelling of rock cutting. Computer Methods in Materials Science, 7:224-230, 2007.
  • 153. C. Labra, J. Rojek, E. Onate, and F. Zarate. Advances in discrete element modelling of underground excavations. Acta Geotechnica, 3:317 322, 2008.
  • 154. H. Huang. Discrete Element Modeling of Tool-Rock Interaction. PhD thesis. University of Minnesota, 1999.
  • 155. G.A. D'Addetta and E. Ramm. Discrete modelling of geomaterials. In P.A. Vermeer,W. Ehlers, H.J. Hermann, E. Ramm, editors, Continuous and Discontinuous Modelling of Cohesive Frictional Materials. Proc. of CDM 2004, 2004.
  • 156. T.T. Ng. Numerical simulations of granular soil using elliptical particles. Computers and Geotechnics, 16, 1994.
  • 157. M.J. Jiang, H.S. Yu, and D. Harris. Discrete element modelling of deep penetration in granular soils. International Journal for Numerical and Analytical Methods in Geomechanics, 30, 2006.
  • 158. S. Hentz, L. Daudeville, and F.V. Donzé. Identification and validation of a discrete element model for concrete. Journal of Engineering Mechanics - ASCE, 130, 2004.
  • 159. K. Meguro and M. Hakuno. Fracture analysis of concrete structures by the modified distinct element method. Structural Engineering/Earthquake Engineering, 6, 1989.
  • 160. N.M. Azevedo, J.V. Lemos, and J. Rocha de Almeida. Influence of aggregate deformation and contact behaviour on discrete particle modelling of fracture of concrete. Engineering Fracture Mechanics, 75:569-1586, 2008.
  • 161. Y. R. Kim, D.H. Allen, and D.N. Little. Damage-induced modeling of asphalt mixtures through computational micromechanics and cohesive zone fracture. Journal of Materials in Civil Engineering, 17, 2005.
  • 162. A.T. Papagiannakis, A. Abbas, and E. Masad. Micromechanical analysis of viscoelastic properties of asphalt concretes. Transportation Research Record, 2002.
  • 163. CIMNE. Dempack, explicit nonlinear dynamic analysis by the finite and discrete element method. web:.
  • 164. E. Ońate, C. Labra, F. Zarate, and J. Rojek. Modelling and simulation of the effect od blast loading on structures using an adaptive blending of discrete and finite element methods. Risk Analysis, Dam Safety, Dam Security and Critical Infrastructure Management, pages 365-372, 2012.
  • 165. H. Hertz. Uber die beruhrung fester elasticher korper (on the contact of elastic solids). Journal fur die reine und angewandte Mathematik, 92:156- 171, 1882.
  • 166. K. L. Johnson. Contact mechanics. Cambridge University Press, 1985.
  • 167. L.M. Taylor and D.S. Preece. Simulation of blasting induced rock motion. Eng. Comput., 9(2):243-252, 1992.
  • 168. D.L. Johnson. New method of obtaining volume, grain boundary, and surface diffusion coefficients from sintering data. J. Appl. Phys., 40:192-200, 1969.
  • 169. L.C. De Jonghe and M.N. Rahaman. Sintering stress of homogeneous and heterogeneous powder compacts. Acta Metall., 36:223-229, 1988.
  • 170. A.V. Khomenko and O.V. Yushchenko. Solid-liquid transition of ultrathin lubricant lm. Phys. Rev. E, 68:036110, 2003.
  • 171. E. Riande, R. Diaz-Calleja, M.G. Prolongo, R.M. Masegosa, and C. Salomon. Polymer Viscoelasticity. Stress and Strain in Practice. Marcel Dekker, Inc., New York, Basel, 2000.
  • 172. D.W. Van Krevelen. Properties of Polymers. Elsevier, 1990.
  • 173. S. Gan, J.C Seferis, and R.B. Prime. A viscoelastic description of the glass transition-conversion relationship for reactive polymers. Journal of Thermal Analysis, 37(3):463-478, 1991.
  • 174. J. Sorvari and J. Hamalainen. Time integration in linear viscoelasticity - a comparative study. Mechanics of Time-Dependent Materials, 14(3):307-328, 2010.
  • 175. T. Hatada, T. Kobori, M. Ishida, and N. Niwa. Dynamic analysis of structures with maxwell model. Earthquake Engineering and Structural Dynamics, 29(2):159-176, 2000.
  • 176. A.N.B. Poliakov, P.A. Cundall, Y.Y. Podladchikov, and V.A. Lyakhovsky. An Explicit Inertial Method for the Simulation of Viscoelastic Flow: An Evaluation of Elastic Effects on Diapiric Flow in Two- and Three- Layers Models, eds. D. Stone and S.K. Runcorn. Springer Netherlands, 1993.
  • 177. C. O'Sullivan and J.D. Bray. Selecting a suitable time step for discrete element simulations that use the central difference time integration scheme. Engineering Computations, 21:278-303, 2004.
  • 178. Y.T. Feng, K. Han, D.R.J. Owen, and J. Loughran. On upscaling of discrete element models: similarity principles. Engineering Computations, (26):599-609, 2009.
  • 179. J.F. Douglas, J.M. Gasiorek, J.A. Swaffield, and L.B. Jack. Fluid Mechanics. 5th ed., Pearson Education, London, 2005.
  • 180. C. Herring. The Physics of Powder Metallurgy. McGraw-Hill Book Co., 1951.
  • 181. D.W. Jung. Study of dynamic explicit analysis in sheet metal forming processes using faster punch velocity and mass scaling scheme. Journal of Materials Engineering and Performance, 7(4):479-490, 1998.
  • 182. C. Thornton. Numerical simulations of deviatoric shear deformation of granular media. Géotechnique, 50:43 53, 2000.
  • 183. X. Tu and J. Andrade. Criteria for static equilibrium in particulate mechanics computations. International Journal for Numerical Methods in Engineering, 75(13):1581-1606, 2008.
  • 184. D. Bolster, R.E. Hershberger, and R.J. Doneelly. Dynamic similarity, the dimensionless science. Physics Today, 9:42-47, 2011.
  • 185. H. Mehrer. Diffusion in Solids - Fundamentals, Methods, Materials, Diffusion-Controlled Processes. Springer Series in Solid-State Sciences, 2007.
  • 186. P. Heitjans and J. Kärger. Diffusion in Condensed Matter Methods, Materials Models. Springer, III edition, 2010.
  • 187. T.L. Hill. An Introduction to Statistical Thermodynamics. New York: Dover, 1986.
  • 188. N.G. Szwacki and T. Szwacka. Basic Elements of Crystallography. Pan Stanford Publishing Pte. Ltd, 2010.
  • 189. J. Philibert. Atom Movements - Diffusion and Mass Transport in Solids. Les Editions de Physique, Les Ulis, 1991.
  • 190. J.R.Davis. Copper and Copper Alloys. ASM International. Handbook Committee, 2004.
  • 191. A. Kuper, H. Letaw, L. Slifkin, E. Sonder, and C. T. Tomizuka. Self-diffusion in copper. Phisical Review, 96:1224-1225, 1955.
  • 192. St. Frank, S. V. Divinski, U. Sodervall, and Chr. Herzig. Ni tracer diffusion in the B2-compound NiAl : In uence of temperature and composition. Acta mater., 49:1399 1411.
  • 193. Chr. Herzig and S.V. Divinski. Essentials in di usion behavior of nickeland titanium-aluminides. Intermetallics, 12:993-1003, 2004.
  • 194. I. Kaur and W. Gust. Diffusion in Solid Metals and Alloys. Springer-Verlag, III edition, 1990.
  • 195. I. Kaur, W. Gust, and L. Kozma. Handbook of Grain and Interphase Boundary Diffusion Data. Ziegler Press, 1989.
  • 196. E.H. Brown. Plastic asymetrical bending of beams. Int.J.Mech.Sci., 9:77- 82, 1963.
  • 197. W. Gust, S. Mayer, A. Bogel, and B. Predel. Generalized representation of grain-boundary self-diffusion data. J. Physique, 46:537-544, 1985.
  • 198. J.C. Fisher. Calculation of di usion penetration curves for surface and grain boundary diffusion. J. Appl. Phys., 22:74-77, 1951.
  • 199. I. Kaur, Y. Mishin, and W. Gust. Fundamentals of Grain and Interphase Boundary Diffusion. Wiley, Chichester West Sussex, 1995.
  • 200. W.D. Kingery, H.K. Bowen, and D.R. Uhlmann. Introduction to Ceramics (2nd ed.). John Wiley and Sons, 1976.
  • 201. J.R. Rice and T.J. Chuang. Energy variations in diffusive cavity growth. Journal of the American Ceramic Society, 64:46 53, 1981.
  • 202. S-J.L.Kang. Sintering: Densi cation, Grain growth and Microstructure. Elsevier, Amsterdam, 2005.
  • 203. W.R. Tyson and W.A. Miller. Surface free energies of solid metals: Estimation from liquid surface tension measurements. Surface Science, 62:267-276, 1977.
  • 204. F.R. de Boer, R. Boom, W.C.M. Mattens, A.R. Miedema, and A.K. Niessen. Cohesion in Metals. North-Holland, Amsterdam, 1988.
  • 205. M. Methfessel, D. Hennig, and M. Scheffer. Calculated surface energies of the 4d transition metals: A study of bond-cutting models. Applied Physics A, 55:442-448, 1992.
  • 206. H.L. Skriver and N.M. Rosengaard. Surface energy and work function of elemental metals. Physical Review B, 46:7157-7168, 1992.
  • 207. L. Vitos, J. Kollar, and H. L. Skriver. Full charge-density calculation of the surface energy of metals. Physical Review B, 49:16694-16701, 1994.
  • 208. A.M. Rodríguez, G. Bozzolo, and J. Ferrante. Multilayer relaxation and surface energies of FCC and BCC metals using equivalent crystal theory. Surface Science, 289:100-126, 1993.
  • 209. P. S. Kislyi and M. A. Kuzenkova. Role of surface energy in the initial sintering period. Powder Metallurgy And Metal Ceramics, 8:482-485, 1979.
  • 210. G. Gottstein and L. Shvindlerman. Grain Boundary Migration in Metals. Taylor and Francis US, 1999.
  • 211. D.L. Olmsted, S.M. Foiles, and E.A. Holm. Survey of computed grain boundary properties in FCC metals: I. Grain boundary energy. Acta Mater, 57:3694 3703, 2009.
  • 212. G.S. Rohrer, E.A. Holm, A.D. Rollett, S.M. Foiles, J. Li, and D.L. Olmsted. Comparing calculated and measured grain boundary energies in nickel. Acta Mater, 58:5063-5069, 2010.
  • 213. J.K. Mackenzie. Second paper on the statistics associated with the random disorientation of cubes. Biometrika, 45:229-240, 1958.
  • 214. G. Palumbo and K.T. Aust. Special properties of Σ grain boundaries, In: Materials Interfaces: Atomic-Level Structure and Properties, ed. by D. Wolf, S. Yip. Chapman and Hall, London, 1992.
  • 215. M.W. Finnis. Accessing the excess: An atomistic approach to excesses at planar defects and dislocations in ordered compounds. Physica Status Solidi. A - Applied Research, 166:397 416, 1998.
  • 216. L.E. Murr. Interfacial phenomena in metals and alloys. Addison-Wesley Pub. Co., Advanced Book Program, 1975.
  • 217. H.E. Exner. Principles of single phase sintering. Rev. Powder Metall. Physic. Ceram., 1:1-4, 1979.
  • 218. N.J.A. Sloane. The packing of spheres. Scientific American, 250:116-125, 1984.
  • 219. V.A. Levchenko and V.A. Borisenko. Temperature dependence of the elastic modulus of copper and its alloys. Khimicheskoe i Neftyanoe Mashinostroenie, (7):11-12, 1978.
  • 220. P. H. Kitabjian and W. D. Nix. Atomic size effects in nial based solid solutions. Acta Metallurgica, 46:701-710, 1998.
  • 221. Y. Amouyal, E. Rabkin, and Y. Mishin. Correlation between grain boundary energy and geometry in Ni-rich NiAl. Acta Materialia, 53:3795-3805, 2005.
  • 222. G. F. Hancock and B. R. McDonnel. Diffusion in the intermetallic compound nial. Physica Status Solidi (A), (4(1)):143-150, 1971.
  • 223. S. Kitaoka, T. Matsudaira, and M. Wada. Mass-transfer mechanism of alumina ceramics under oxygen potential gradients at high temperatures. Materials Transactions, 50(2):1023-1031, 2009.
  • 224. J. Wang and R. Raj. Estimate of the activation energies for boundary diffusion from rate-controlled sintering of pure alumina, and alumina doped with zirconia or titania. Journal of the American Ceramic Society, 73(5):1172-1175, 1990.
  • 225. P. Agrawala, K. Conlon, K.J. Bowman, C.T. Sun, F.R. Cichocki JR, and K.P. Trumble. Thermal residual stresses in co-continuous composites. Acta Materialia, 51:1143-1156, 2003.
  • 226. J. Rojek, G.F. Karlis, L.J. Malinowski, and G. Beer. Setting up virgin stress conditions in discrete element models. Computers and Geotechnics, 48:228-248, 2013.
  • 227. S. Luding. Micro-Macro Transition for anisotropic, aperiodic, granular materials. International Journal of Solids and Structures, 41(21):5821-5836, 2004.
  • 228. C. Miehe, J. Schröder, and M. Becker. Computational homogenization analysis in finite elasticity: Material and structural instabilities on the micro- and macro-scales of periodic composites and their interaction. Comput. Meth. Appl. Mech. Eng., 191:4971-5005, 2002.
  • 229. E. Ramm, G.A. D'Addetta, and M. Leukart. Interrelations between continuum and discontinuum models for geomaterials. In VII International Conference on Computational Plasticity COMPLAS 2003, Barcelona, 2003.
  • 230. V. Kouznetsova. Computational homogenization for the multi-scale analysis of multi-phase materials. PhD thesis, Technische Universiteit of Eindhoven, 2002.
  • 231. M. Lätzel. From microscopic simulations towards a macroscopic description of granular media. PhD thesis, University of Stuttgart, 2003.
  • 232. C. Wellmann, C. Lillie, and P. Wriggers. Homogenization of granular material modeled by a three-dimensional discrete element method. Computers and Geotechnics, 35(3):394-405, 2008.
  • 233. M. Lätzel, S. Luding, and H. Herrmann. Macroscopic material properties from quasi-static, microscopic simulations of a two-dimensional shear-cell. Granular Matter, 2:123-135, 2000.
  • 234. R. Christensen. Mechanics of composite materials. John Wiley, New York, 1979.
  • 235. S. Nemat-Nasser and M. Hori. Micromechanics: overall properties of heterogeneous materials. North Holland, Amsterdam, 1993.
  • 236. C. Chang, S. Chao, and Y. Chang. Estimates of elastic moduli for granular material with anisotropic random packing structure. Int. J. Solids and Structures, 32:1989-2008, 1995.
  • 237. A.S. Edelstein and R.C. Cammaratra. Nanomaterials: Synthesis, Properties and Applications, Second Edition. Institute of Physics. Series in micro and nanoscience and technology. Taylor & Francis, 1998.
  • 238. E.A. Olevsky and V. Tikare. Macro-Meso Scale Modeling of Sintering. Part I, in Recent Developments in Computer Modeling of Powder Metallurgy Processes (eds. A. Zavaliangos, A. Laptev). IOS Press, 2001.
  • 239. W. W¦glewski, M. Basista, A. Manescu, M. Chmielewski, K. Pietrzak, and Th. Schubert. E ect of grain size on thermal residual stresses and damage in sintered chromium-alumina composites: Measurement and modeling. Composites Part B-Engineering, 67:119-124, 2014.
  • 240. D. Bouvard and R.M. McMeeking. The deformation of interparticle necks by diffusion controlled creep. J. Am. Ceram. Soc., 79(3):666-672, 1996.
  • 241. R.L. Coble. Initial sintering of alumina and hematite. J. Am. Ceram. Soc., 41:55-62, 1958.
  • 242. M.E. Wieser and T.B. Coplen. Atomic weights of the elements 2009. Pure Appl. Chem., 83(2):359-396, 2011.
  • 243. C. A. Moose. MS thesis. Pennsylvania State University., 1991.
  • 244. V. Raghavan. Material Science and Engineering: A First Course. Prentice- Hall of India Pvt.Ltd, 2004.
  • 245. K. Bagi. An algorithm to generate random dense arrangements for discrete element simulations of granular assemblies. Granular Matter, 7:31- 43, 2005.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4a099227-acbb-4bce-86ac-1688f0b56784
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.