INTERNATIONAL JOURNAL OF MICROELECTRONICS AND COMPUTER SCIENCE, VOL. §, NO. 4, 2017 155

Human Machine Interface
for Piezo Control System

Pawel Plewinski, Dariusz Makowski, Aleksander Mielczarek, and Andrzej Napieralski

Abstract—The increasing complexity of scientific experiments
puts a large number of requirements on the systems, which need
to control and monitor the hardware components required for the
experiments. This article discusses three different technologies of
developing Human Machine Interface (HMI) for the Piezo Control
System (PCS) developed at the Lodz University of Technology
(TUL). The purpose of the PCS system is compensating the
detuning of a superconducting accelerating structure caused by
the Lorentz force. A set of full-custom HMI operator interface was
needed to operate the prototype device. In order to select the
technology, which would best suit the requirements; the interface
was designed and developed in native Qt, Qt Quick and EPICS.
The comparison was made and their advantages and drawbacks
are presented.

Index Terms—Human Machine Interface, HMI, High Energy
Physics, Qt, Qt Quick, QML, EPICS, BOY, MicroTCA

L INTRODUCTION

HE increasing complexity of scientific experiments, such

as particle accelerators, free-electron lasers or tokamaks,
puts an ever-growing set of requirements on the systems, which
control and monitor the hardware set-ups [1, 4]. One of the
crucial requirements is to provide reliable and ergonomic user
control panels for operation, management and state monitoring
of the aforementioned systems.

This article presents and compares three different
technologies of creating Human Machine Interface (HMI) for
physical devices. Three various attempts are discussed, namely
native Qt user interface, Qt-QML with Qt Quick 2 interface
controls and Best OPI Yet (BOY).

II. CONTROLLED SYSTEM

The motivation for developing the discussed HMI is the
urge to control and monitor a prototype Piezo Compensation
System (PCS) developed by the Department of
Microelectronics and Computer Science of the Lodz University
of Technology (TUL-DMCS) for the European Spallation
Source (ESS) within the in-kind contribution of Polish
Electronic Group (PEG) consortium.

The PCS system structure is presented in Figure 1. Its
electronic part consists of a MicroTCA. .4 chassis with a number
of modules, namely: Analog-to-Digital Converters (ADCs) and
Digital-to-Analog Converters (DACs) in a form of FPGA
Mezzanine Carrier (FMC) modules hosted on an FMC carrier,
prototype high power dual-channel amplifier assembly (shown
in Figure 2). Optionally a strain readout device using an S-type

P. Plewinski, D. Makowski, A. Mielczarek and A. Napieralski are with the
Department of Microelectronics and Computer Science, Lodz University of
Technology, £.6dz, Poland (email: pplewinski@dmcs.pl).

ISSN 2080-8755

full-bridge tensometer can be connected. The modular approach
makes it possible to build and evaluate the complete system
more easily and with lesser cost, as well as to easily test several
possible components without requiring significant changes in
the system.

MicroTCA Crate

Piezo
1 Elements
,,,_$_4u
Amplifier |
(PZD-MEZ-IR52052) 4
DC/DC
!M-Pi :202
AMC Base Accelerating

(Evald) Structure

Figure 1. Block diagram of Piezo Compensation System prototype

Figure 2. MicroTCA .4 piezo driver prototype

The system interfaces two piezo elements; each can be used
either as a sensor or as an actuator. The purpose of the PCS
system is compensating the detuning of a superconducting
accelerating structure caused by the mechanical stress. The
detuning is mainly caused by the deformation due to Lorenz
force due to high electric field gradients inside the cavity and
also in some part by the microphoning effect. First factor can
be compensated by applying a predefined force pattern to the
structure, synchronously to the accelerator timing. The second
one requires observation and the active correction of the cavity
deformation. Therefore, in a final system one piezo element will
be operated as an actuator, whereas the second one will be used
as a sensor.

Copyright © 2017 by Department of Microelectronics & Computer Science, Lodz University of Technology

156 PLEWINSKI et al..: HUMAN MACHINE INTERFACE FOR PIEZO CONTROL SYSTEM

To test the developed system, firstly, it was required to
prove that the signal from piezo sensor can be reliably read with
the prepared hardware. Secondly, it had to be shown that the
piezo actuator can be properly driven and effectively shift the
resonant frequency of the accelerating cavity. In order to do so
the system shall offer the functionality of an oscilloscope and an
arbitrary function generator synchronized to the machine timing.
To fulfill this requirement a 4-channel generator and
oscilloscope was developed in an Artix 200 FPGA circuit of the
MicroTCA.4 FMC carrier module [2]. It interfaces with the
external world by means of two commercial FMC modules
containing the ADC and DAC circuits. The device is configured
and controlled over a PCle interface, exposing a simple set of
registers accompanied by memory regions containing the
received and generated waveforms.

The aforementioned hardware is connected to an x86-based
embedded industrial computer installed in the MicroTCA.4
chassis [3]. The FMC carrier card is connected to the computer
via PCI Express link on the backplane. The whole FMC
assembly is visible as a single device. A custom driver
developed at TUL-DMCS is used to access the device.

The system operation with piezo actuators was initially
tested with use of the load cell. In this test set-up the
commercial load cell readout device is connected to the PC with
an USB-to-RS485 adapter and is visible to the software as a
virtual serial port. The meter implements a custom binary
protocol, sending a constant start byte followed by the strain
value measured by the tensometer every 80 ms in fixed-point
decimal format (4 bytes). The practical tests were done in the
FREIA facility in Uppsala, Sweden, with use of a spoke cavity
operating in the self-excited loop mode with the electric field
gradients of around 1 MV/m.

III. REQUIREMENTS

User interface was needed to operate the prototype device.
The HMI provide readouts from tensometer and ADCs updated
in real-time as well as allow controlling the waveform generator
implemented for the DACs. These allow independent control of
all four channels; provide possibility of selecting waveform
generation from a pre-defined list and adjustment of signal
parameters, such as amplitude, frequency and offset.

Ergonomics and readability are among the most important
qualities of good HMI [1, 5, 6, 7]. Moreover, the underlying
technology should offer performance allowing use of the
interface even on embedded computers with limited resources
and computing power.

A significant advantage of the selected HMI design
technology should be the ease of modifications of the user
interface for the needs of specific users. An example would be
a possibility of easy development of an interface with limited
functionality for less advanced users of a system. The platform
should provide tools for easy development and modification of
user interfaces, preferably in a WYSIWYG (What You See Is
What You Get) fashion.

Also a functionality of remote and distributed access to the
controlled systems, preferably from multiple clients, would be
advantageous.

IV. QT FRAMEWORK

Qt is a C++ based cross-platform software programming
framework developed and supported by The Qt Company [7].
The current stable major version of the framework is 5, first
released in 2012 and still actively developed. The framework
provides not only graphical user interface, but also modules
supporting more advanced functionalities such as multimedia,
access to databases or computer peripherals, such as serial port.
Most of these modules are available for all platforms supported
by Qt [8].

Unique features implemented in the framework are the
system of signals and slots and property system. The former is
an event system, which allows binding individual components,
while the latter provides possibility to create sophisticated
component parameters, with certain actions executed on change
of the value [9, 10].

The Qt framework provides two technologies for creating
applications equipped with GUI — traditional native user
interface and newer Qt Quick and both are discussed in sections
below. Applications supporting the PCS system were
developed in both technologies for comparison.

V. NATIVE QT

Native programs using the Qt framework can be built for
Windows, Linux and Mac OS, among others. The application
code and user interface code are written in C++. The interface
layout can also be placed in an XML file, which is converted to
a C++ header file during the compilation process [11]. The
applications using Qt framework follow the user interface style
of the host operating system and therefore integrate seamlessly
with the particular graphical environment.

The HMI developed in this technology were divided in two
applications — first for displaying readouts from tensometer and
the other for controlling signal generators and displaying
signals gathered on the ADCs in the time base. This division
follows the physical structure of the system.

In the tensometer application, the main part of the interface
is a chart view of the readout. Available Ul controls include:
selection of the port, to which the measurement device is
connected, setting tare tension and control of chart scaling.
Screenshot of the application is shown in Figure 3.

- Tensometer Force Readout Plot = o x
Port: ttyUSBO - Disconnect |
+1 '] Tare I [Rescale | Save |

Figure 3. Load cell readout application developed in native Qt

INTERNATIONAL JOURNAL OF MICROELECTRONICS AND COMPUTER SCIENCE, VOL. §, NO. 4, 2017 157

The other application has much more complex interface,
due to the fact that it needs to present more data and provide
control over greater number of parameters. Again, the major
part of the window is occupied by a chart view and chart-related
controls and the other part of the window is used for controlling
parameters of the generator and signal acquisition. Screenshot
of the main window with Ul for signal generation and
acquisition are presented in Figure 4.

dmesll ~| Channel 1

Turn off
Dtscomnact’ | =l P
Sawtooth 2
Sovedits | ——r—t
T S0HZ—2kHz -]
Trigger Load Audio.. | Trger
Hode 03 Plezo mode 125v oouv 1owo ke e -
@ Froe Run
ORsngEige CMOMMZ o omer Freq: BN,
O Falling Edge Turn o i
1 1
[l Pre-trigger Triangle bl | Feriod
i .| 500 Hz —20kHz - o 000 = |
Level Lkl | e :
& Plezo mode 000v, 000v 20k =l -
Channel 3 T T |
e Amgl: Offset: I'rvq..ql. e .
single e) \ Pariog
sto |30 HE2 dhy e - 00
2 Load Ao — T owoe
Horizontal & pieso mode 000V, 000V 500 He __I
=] % Time scale:
Vertical Gain Offset 1ms - m:m Ampl; Qffset: Freq: BUmE.]
Sealing Ch 1: 1 =|[o.00 v B e P:"m H
Full range -lch 2: x1 -|focav |3 SoHz—2khz - J o.coo00
ERE - ooy 3 Loiad Ausdio._ T T o
Chas « -|osev T & Piezo made 000V, D00V 500Hr -

Figure 4. Main PCS application written in native Qt for controlling signal
acquisition and generation.

Since plotting charts was one of the key tasks of the
discussed applications, an efficient plotting subsystem was
required. While Qt integrates a plotting module called Qt
Charts, its licensing terms made it impossible to be used in the
discussed applications. Therefore, the decision was taken to
utilize chart widget from an open-source QCustomPlot library
[12]. The library provides a wide range of customizable charts
and is available under attractive LGPL license.

Since the native Qt 5 platform is mature and partially
backwards compatible with its older version — Qt 4, the choice
of stock widgets is reasonably large, however they often need
several modifications in order to be intuitively used in an
operator user interface. The performance of the native code is
very satisfying and achieving refresh rates of over 10 Hz on an
embedded Kontron AM5010 PC in MicroTCA chassis was not
a major issue [3].

Due to the fact that the developed HMI runs as a single
native application, adding functions interacting with local
computer, such as exporting logged data to file or loading
arbitrary waveform to FPGA memory was not a problem.

The framework is packaged with a Qt Creator Integrated
Development Environment (IDE), which integrates a powerful
source code editor and an intuitive graphical Ul editor, and
covers all steps of application development.

On the other hand, the code responsible for UI is directly
bound with the application logic. Programming model
suggested for this technology does not promote separation
between the Ul layer (View) and application logic. Moreover,
since the interface is implemented in C++ code, any change of
layout requires recompiling the whole application and often
also doing changes in the program code.

Unfortunately, the Qt framework does not provide high
level libraries for network discovery and message-based
communication, therefore additional work would be required to
transform the discussed HMI applications into a distributed
system.

VI. QT QUICK

Qt Quick is a relatively new technology available in the Qt
Framework. It introduces a new language for interface
description — QML, and the interface code can be enhanced
using Java Script. Applications using this technology can be
developed not only for all the platforms supported by native Qt
code, but also for mobile platforms as Android, iOS or
Windows Mobile [13].

All the HMI solutions implemented in this technology are
contained in a single application, divided into tabs, which
represent the subsequent components of the system. In this
approach an additional tab for limits configuration was also
provided. Screenshots of individual operator interfaces are
shown in Figure 5, Figure 6 and Figure 7.

HyUsSED -

DISCONNECT

RESET
Display:

O mvw
(8 eograms

O Mewtons
'3 Mumber of sampies
100

TARE
EXPORT

START RECORDING

FIEZO MONITOR PIEZO DRIVER SETTINGS

Figure 5. Tensometer readout Ul in the Qt Quick application.

L& Piezo force visualizer

Frequency [Hz] 2000 [Burst mode

@ cChannel 1 Triangle ~ Amplitude V] — 100 4 pepetions 2000
Offset[v] — 000 4 Puriod (] 10
Frequency [Hz) 1000 O Burst mode

@ channel 2 Sawtooth 1 = Amplitude [V] — 1.20 + nepetitions 100
Offset[v] — 007 + Period [ms] 100

Frequency [Hz] 1000 [Burst mode

D charnel 3 Sine = Amplitude [V] — 1.0 + Repetions 100
Offset V] — 0,00 + puriod (ma] 100
Frequency [Hz] 2000) Burst mode
@ channeld Triangle ~ Ampltude [V] — 1.20 + mepetiicns 100
Offset [v] = 0.00 + Period (ms) 100

TENSOMETER PIEZO MONITOR PIEZO DRIVER SETTINGS

Figure 6. Panel for configuration of signal generation parameters in the Qt
Quick application.

158 PLEWINSKI et al..: HUMAN MACHINE INTERFACE FOR PIEZO CONTROL SYSTEM

Trigger settings

Deace dmcsll + DISCONNECT Trigger level:

10200 P Y

axns

S/ channel
Charinel 0

8 on

150

g 150

Q) Free nn 1x
[\ Channel 1
(®) Rising cdge
en
O Faling edge
| | 1x -
II | source

Channel 2

| CHL -
| an

[1x -
Channel 3

B o

Lx

TEMSOMETER PIEZD MORITOR

PIEZO DRIVER SETTINGS

Figure 7. Signal acquisition interface developed in Qt Quick.

The UI code can access appropriately annotated C++ code,
i.e. annotated methods of objects inheriting from QObject [13].
Thanks to this, the code for communication with the devices
written for the previous application could be reused with only
minimal changes. This also means that a Qt Quick application
can have exactly the same functionality as a native one.

The Ul is adjusted for touch screens. Complex support for
touch gestures is provided by the environment and gestures are
supported by the default widgets. Therefore, an operator could
intuitively use such interface on a mobile device such as tablet,
e.g. during on-site works.

The QML is a declarative language and as such it minimizes
the number of code required to implement desired functionality.
Thanks to the advanced property system, bindings between
different properties of components only need to be specified
and not explicitly implemented. The programming model
requires dividing the application into reusable components.
Moreover, the interactions between respective Ul elements and
interactions between Ul and application logic are described
only on higher level. Therefore, it is easy to customize the user
interface without the need to modify code and it does not
require recompiling the application.

On the other hand, the technology has also significant
drawbacks which caused the authors to stop the development
using this technology. Firstly, the choice of available widgets is
currently very limited, most likely due to relatively low
adoption of this technology. The widgets provided with the
framework were scarce and their behavior did not always meet
the requirements.

QChart.js chart library was used in the project [13]. It was
the only plotting library for Qt Quick technology available on a
permissive LGPL license. It is a port of Java Script Chart.js
library to the QML platform. Its major flaw is low performance
due to the technology used. Stuttering was observable even at
refresh rates of 5 Hz with a single plot and attempts to increase
either the refresh rate or number of plots made the whole
application barely usable.

Similarly to the native Qt application, any network
functionalities would have to be implemented from scratch or
with the use of external libraries or message brokers.

VII. EPICS
A. EPICS environment

Experimental Physics and Industrial Control System
(EPICS) is an open-source set of tools, libraries and
applications aimed at creating distributed real-time control
systems for scientific applications [15]. It provides a
standardized Channel Access (CA) protocol, which is used by
all EPICS-compliant tools. It is designed to provide low latency
and high bandwidth and can be reliably used even in large
networks. EPICS is widely used in scientific experiments
around the world [16, 17].

Client/Server and Publish/Subscribe techniques are used by
EPICS for communication over network effectively, i.e.
without overhead for sending unneeded data [15]. Servers in the
EPICS ecosystem are called Input/Output Controllers (IOC)
and provide information accessible over CA protocol in form of
Process Variables (PV). They usually contain code for
controlling physical devices.

Several variable types exist in EPICS. The most commonly
used are analog input and output (ai, ao), which represent
floating point values, long input and output (longin, longout),
binary input and output (bi, bo), multi bit binary input and
output (mbbi, mbbo) and calculation variables (calc).
They can include additional parameters, which characterize the
variable purpose and functioning. Examples of these
parameters are description, unit, names and values of respective
binary values, alarm configuration or scanning rate.

Each variable is defined in a specific record in database file.
A record contains variable type and name and can contain
additional parameters. An example of variable definition record
is presented in Listing 1. It presents an output field for
configuration of signal acquisition trigger parameters with
named predefined values.

record (mbbo,
{

"PIEZO:0SC-CHS$ (CHANNEL) ~-TRIG")

field (DESC, "Signal trigger")

field(SCAN, "1 second")
field(PINI, "O")

field (DTYP, "asynInt32")
field (ouT, "@asyn ($ (PORT) , $ (ADDR}, $ (TIMEOUT)) OSC_TRIG")
field (ZrRVL, "0")

field (ONVL, "1")

field (TWVL, "2")

field (THVL, "3")

field (FRVL, "4")

field (ZRST, "None")
field (ONST, "Free")

field (TWST,
field (THST,
field (THST,

"Rising edge")
"Falling edge")
"Any edge")

Listing 1. Example record definition in EPICS database

B. BOY operator interface environment

There are multiple ways to receive data from a CA server,
not only by means of console utilities or libraries for several
programming languages, but also by intuitive operator interface.

INTERNATIONAL JOURNAL OF MICROELECTRONICS AND COMPUTER SCIENCE, VOL. §, NO. 4, 2017 159

Several solutions for designing EPICS-compatible HMI exist
and the most widely used is BOY (Best OPI Yet) [18].

BOY provides development environment based on open-
source Eclipse IDE, called Control System Studio (CSS) [18].
It is both editor and runtime environment for the HMI
developed with this solution.

The interface designs are defined in OPI files. Each OPI file
can contain widgets or other embedded OPI files. Reuse of
interface design is possible by creating template files with
macros, which are substituted with requested values.

BOY provides an abundance of widgets well suited for
scientific applications. All widgets can monitor an EPICS PV
or a local variable. Thanks to the subscribe mechanism of
EPICS, the values displayed for the user are refreshed only
when the value has actually changed, which saves computer and
network resources. If the functionality offered by the standard
widgets does not fulfill the requirements, new widgets can be
developed and programmed in Java.

C. Device support

To make it possible to control and monitor a given device
using EPICS, so called device support must be present. While
there exist device support packages for multiple devices
available on the market, the custom FPGA based data
acquisition and signal generator obviously did not have one.
Similarly, the commercial tensometer data reader was not
provided with EPICS support. Thus, it was necessary to provide
it for both devices.

Generally, device support for EPICS can be written in C or
C++. However, the API provided by EPICS is not always
intuitive and requires substantial work to handle asynchronous
requests. Therefore, AsynDriver was developed, which can be
used for either asynchronous or synchronous device support
[19]. Moreover, to simplify the process of writing drivers for
devices, which use ASCII-based protocol (over serial port,
GPIB or web sockets), StreamDevice library exists, which can
automatically handle even complicated text protocols [20].

The C++ version of AsynDriver was used to provide support
for both devices used in the system described in this paper.
StreamDevice was evaluated for use with the tensometer, but it
had problems handling the binary protocol of the device.

For both devices, a major part of the code responsible for
the communication with hardware could be ported from the
existing Qt solution with only small changes.

D. Human Machine Interfaces

Operator UI was developed for all the supported devices.
Three main Uls were developed, i.e. for ADCs, signal generator
and tensometer. These panels are separate, but thanks to the
functionality of BOY, embedding them all in a single user
interface would not be complicated. Similar functionality as in
the other tools mentioned in this paper is provided. Screenshots
are visible in Figure 8, Figure 9 and Figure 10.

Thanks to the templating system and possibility of
embedding panels in one another it is possible to easily develop
a more complex interface, which would integrate several other
HMIs. Moreover, they can be developed and edited by users
without programming capabilities, since the included widgets

Tension [N]
- o

4

19:0‘0:01 19:00:01 19:0:01 19:00:02 19:00:02 lB:[‘)‘O:OZ
Time
Tare
Figure 8. Tensometer readout UI developed in BOY (EPICS).

w Waveform | Sine % Burst t Reps

Channel 0

4] 3 I Pericd

Amplitude 067V Frequency 2630 Hz Offset 000V

0 05 1 15 2 25 3 35 4 45 5 OEQ2E34E36E3BEI1E4 14E4 2E4-5 -4 -3 -2 -1 0O 1

Waveform | Sawtooth 1 % Burst ' Reps

Channel 1 L

['] = Period

Amplitude 1,16 V

Offset 0.00V

Frequency 3240 Hz

0 051 15225 3 35 4 45 5 OFOJE34EIGEIBEIIEA 14E4 B85 4 3 2 3 0 1

Figure 9. User interface for configuration of signal generation parameters
developed in BOY (EPICS).

a0

a-ﬂ.l %

=02 -
-03 -
0.4 -
05 -
06 -

ea:

ment [V]
o O 0O O O O
= N W s W0
g
.) i i
4
i i
K
| Lo ol
L s
Las Lais

Time [ms]

Figure 10. Signal acquisition interface developed in BOY (EPICS).

can handle the PV protocol themselves. BOY provides good
separation between Ul and controller code, as the whole
communication is realized by the EPICS PV layer.

VIIIL.

EPICS is the state of the art control system used in
numerous high energy physics experiments and other control
systems worldwide. The client-server architecture with
standardized and efficient protocol makes it easier to develop
functional control systems. Moreover, the EPICS ecosystem
consists of several tools for building operator user interfaces,
which ease up the development and modification of GUISs fully
compliant with EPICS CA protocol. Support for many common
devices for EPICS has already been developed and is available
on permissive licenses, which can further simplify the
development of complex control systems.

On the other hand, the strictly defined structure of EPICS
makes it difficult to implement certain non-standard
functionalities. For example, support of generation of arbitrary

CONCLUSIONS

160 PLEWINSKI et al..: HUMAN MACHINE INTERFACE FOR PIEZO CONTROL SYSTEM

waveforms would require major work both in IOC and in BOY,
e.g. with the use of scripting. Thus, native applications can be a
good choice for maintenance or testing applications, which
would need to exchange large amounts of binary data and for
which remote and distributed control is not a priority.

Qt Quick is a promising technology; however it is not yet
ready for use in control system applications due to the poor
performance on embedded hardware with low processing
power and without dedicated graphics processor. Little
availability of quality widgets is also an issue. Yet, in the future,
after the increase of computing power in embedded systems, it
may be a good successor of the native Qt user interface.
Moreover, as the QML interface description language is
extendable, it is possible to implement an EPICS client with Qt
Quick interface defined in this language, which may be a
successor of the current Java-based tools. This would give an
additional benefit of the possibility to run such a client on
mobile devices, which can be useful e.g. for onsite works.

REFERENCES

[1] Arun K. Ghosh, “Introduction to Measurements and Instrumentation”, 4th
edition, October 2012, PHI

[2] Advanced Industrial Electronic Systems, “MFMC MTCA.4 FMC Carrier
Module Overview”, 2014

[3] Kontron, “AMS5010 User Guide”, Rev. 4.0, May 2011

[4] D. Makowski, A. Mielczarek, P. Perek, G. Jabtonski, A. Napieralski,
M. Orlikowski, B. Sakowicz, P. Makijarvi, S. Simrock and V. Martin, 2014
"High-Performance Image Acquisition and Processing System with
MicroTCA.4," 19th IEEE-NPSS Real Time Conference (RT), pp. 1-2, May.

[5] P. Asensio, P., R. Vilanova, and B. Amante Garcia. "Human intervention
and interface design in automation systems." International Journal of
Computers, Communications & Control 6.1 (2011): pp. 166-174.

[6] Deborah J. Mayhew, “Principles and Guidelines in Software User
Interface Design”, Prentice Hall PTR, 1992, pp. 579-596

[7] John J. Pannone, “How to best design an HMI system”, Product Design
and Development, June 2015

[8] The Qt Company, “The Qt Company”, https://www.qt.io/company/,
accessed 1.05.2017

[91 The Qt Company, “Qt 5.9 Documentation: Qt Overviews”,
http://doc.qt.io/qt-5/overviews-main.html, accessed 1.05.2017

[10] The Qt Company, “Qt 5.9 Documentation: The Property System”,
http://doc.qt.io/qt-5/properties.html, accessed 1.05.2017

[11] The Qt Company, “Qt 5.9 Documentation: Signals
http://doc.qt.io/qt-5/signalsandslots.html, accessed 1.05.2017

[12] The Qt Company, “Qt 5.9 Documentation: User Interface Compiler
(uic)”, http://doc.qt.io/qt-5/uic.html, accessed 1.05.2017

[13] Emanuel Eichhammer, “Qt Plotting Widget QCustomPlot”,
http://www.qcustomplot.com/index.php, accessed 4.05.2017

[14] The Qt Company, “Qt 5.9 Documentation: QML Applications”,
http://doc.qt.io/qt-5/qmlapplications.html, accessed 1.05.2017

[15] Jutting Bytes, “QChart.js: QML Bindings for Chart.js”, February 2014,
http://jwintz.me/blog/2014/02/15/qchart-dot-js-qml-binding-for-chart-
dot-js/

[16] EPICS, “About
accessed 10.05.2017

[17] 1. Zelaya, D. Makowski, P. Perek and A. Napieralski, "Human Machine
Interface for data acquisition systems applied in High Energy Physics,"
2016 MIXDES - 23rd International Conference Mixed Design of
Integrated Circuits and Systems, Lodz, 2016, pp. 93-98.

[18] T. Katoh et al., 2005, "Present Status of the J-PARC Control System,"
Proceedings of the 2005 Particle Accelerator Conference, pp. 302-304

& Slots”,

EPICS”, http://www.aps.anl.gov/epics/about.php,

[19] Control System Studio, “Control System Studio”,
http://controlsystemstudio.org/, accessed 10.05.2017
[20] Mark Rivers, “asynDriver: = Asynchronous Driver Support”,

http://www.aps.anl.gov/epics/modules/soft/asyn/, accessed 10.05.2017

[21] Dirk Zimoch, “EPICS StreamDevice”, http://epics.web.psi.ch/software/
streamdevice/doc/, accessed: 15.05.2017

Pawel Plewinski received MSc degree in computer
science from the Lodz University of Technology
(TUL), Poland in 2016. His main areas of interest are
embedded and mobile systems and software
development. He has been involved in projects

coordinated by such facilities as Deutsches
Elektronen-Synchrotron (DESY), European
Spallation ~ Source (ESS) and International

Thermonuclear Experimental Reactor (ITER).

Dariusz R. Makowski received the M.Sc. degree and
the Ph.D. degree (with honours) in 2001 and 2006,
respectively, and a D.Sc. degree in electronic
engineering in 2018 from the Lodz University of
Technology, Poland. Since 2001, he has been with the
Department of Microelectronics and Computer
Science (DMCS) at the same university. He is
currently the Professor Assistant at the Lodz
University of Technology.

He is focusing his research on digital control, data and
image acquisition or processing. Dariusz Makowski is
leading the Control and Data Acquisition (CADAQ) group involved in
development of complex, distributed controls systems based on Advanced
Telecommunications Computing Architecture, MicroTelecommunications
Computing Architecture and PXI/PXIe standards. The developments cover the
whole path from the hardware design, drivers, low and high-level firmware
programming including HMI.

He has authored or coauthored 3 books and over 160 papers published in
conference proceedings and journals. Since 2001 he collaborates with DESY in
Germany, since 2008 with ITER in France research institutes. He has received
15 international and 22 national awards including: Prize of the Prime Minister
of Poland in 2007, Lodz University Dean's Awards, Minister Scholarships,
Award for Young and Talented Scientists. He gave 6 invited talks and seminars
in USA and 5 European countries. He has been a member of MIXDES
international conference program committees.

Aleksander Mielczarek received his Ph.D. degree in
electronics at the Faculty of Electrical, Electronic,
Computer and Control Engineering in 2017. His main
areas of interests are high-speed data acquisition and
processing, gigabit communication, integrated
sensors and embedded systems. He is involved in the
development of control and data acquisition systems
for European X-Ray Free-Electron Laser (E-XFEL),
a project carried by Deutsches Elektronen-
Synchrotron (DESY). He also participates in the
realization of Piezo Compensation System for
European Spallation Source (ESS).

Andrzej Napieralski received the MSc and PhD
degrees from the Lodz University of Technology
(TUL), Poland in 1973 and 1977, respectively, and a
DSc degree in Electronics from the Warsaw
University of Technology, Poland and in
Microelectronics from the Universit¢é de Paul
Sabatiér, France in 1989. Since 1996 he has been
Director of the Department of Microelectronics and
Computer Science. Between 2002 and 2008 he was
Vice-President of TUL. He is an author or co-author
of over 960 publications and editor of 19 conference
proceedings and 12 scientific Journals. He has supervised 45 PhD theses; six of
them received the Prime Minister of Poland prize. In 2008 he received the
Degree of Honorary Doctor of Yaroslaw the Wise Novgorod State University,
Russia.

