Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Sprężysto-plastyczne analizy numeryczne niezależne od prędkości odkształcenia dla materiałów polikrystalicznych z zastosowaniem teorii plastyczności kryształów
Języki publikacji
Abstrakty
Macroscopic analyses of plastic forming processes give only the overall description of the problem without the consideration of mechanisms of plastic deformation and the microstructure evolution. For the consideration of these processes, numerical simulations within crystal plasticity include the change of texture, anisotropy, and strain hardening of the material are used. In this paper, a crystal plasticity rate-independent model proposed by Anand and Kothari is applied for numerical analyses of polycrystalline materials. The slip was considered as the main mechanism of the plastic deformation. Basic constitutive equations of crystal plasticity for large deformation theories are presented. The selected results of elastic-plastic problems obtained using both macro- and micro- scales software for the explicit and implicit integration are featured here. The heterogeneous distribution of strain and stress in different grains are obtained, which is associated with the various crystal orientation. The crystal plasticity modelling of materials subject to plastic deformation involves not only the information about the change of a material’s shape in a macro-scale, but also describes the phenomena occurring in material in a micro-scale.
Analizy makroskopowe procesów przeróbki plastycznej prezentują jedynie ogólny zarys rozważanego problemu, bez uwzględnienia mechanizmów odkształcenia plastycznego oraz ewolucji mikrostruktury. W celu rozważania procesów przeróbki plastycznej stosowane są symulacje numeryczne w ramach teorii plastyczności kryształów uwzgledniające zmianę tekstury, anizotropię oraz umocnienie odkształceniowe. W artykule zaprezentowano zastosowanie modelu Ananda i Kothari w ramach teorii plastyczności kryształów niezależnej od prędkości odkształcenia do rozwiązywania analiz numerycznych dla materiałów polikrystalicznych. W badaniach uwzględniono poślizg dyslokacyjny jako główny mechanizm odkształcenia plastycznego. Zaprezentowano wybrane rezultaty dla problemów sprężysto-plastycznych uzyskane zarówno w skali makro, jak i mikro- dla całkowania typu explicit i implicit. Uzyskano niejednorodny rozkład naprężenia i odkształcenia w poszczególnych ziarnach, związany z różną orientacją kryształów. Modelowanie numeryczne zzastosowaniem teorii plastyczności kryształów dla materiałów poddanych plastycznemu odkształceniu dostarcza nie tylko informacje o zmianie kształtu materiału w skali makro, ale także opisuje zjawiska zachodzące w materiale w skali mikro-.
Rocznik
Tom
Strony
63--78
Opis fizyczny
Bibliogr. 49 poz., rys., tab., wykr.
Twórcy
autor
- Department of Materials Forming and Processing, Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, 8 Powstańców Warszawy Ave., 35-959 Rzeszów, Poland
autor
- Department of Materials Forming and Processing, Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, 8 Powstańców Warszawy Ave., 35-959 Rzeszów, Poland
autor
- Department of Materials Forming and Processing, Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, 8 Powstańców Warszawy Ave., 35-959 Rzeszów, Poland
autor
- Department of Technology, Materials and Computer Supported Production, Faculty of Mechanical Engineering, Technical University of Košice, 74 Mäsiarska St., 040 01 Košice, Slovakia
Bibliografia
- 1. Abdolvand, H., Daymond, M.R., & Mareau, C. (2011). Incorporation of twinning into a crystal plasticity finite element model: Evolution of lattice strains and texture in Zircaloy-2. Int. J. Plast., 27, 1721-1738. https://doi.org/10.1016/j.ijplas.2011.04.005
- 2. Acar, P., Ramazani, A., & Sundararaghavan, V. (2017). Crystal Plasticity Modeling and Experimental Validation with an Orientation Distribution Function for Ti-7Al Alloy. Metals, 7, 459. https://doi.org/10.3390/met7110459
- 3. Alankar, A., Eisenlohr, P., & Raabe, D. (2011). A dislocation density-based crystal plasticity constitutive model for prismatic slip in α-titanium. Acta Mater., 59, 7003-7009. https://doi.org/10.1016/j.actamat.2011.07.053
- 4. Anand, L., & Kothari, M. (1996). A computational procedure for rate-independent crystal plasticity. J. Mech. Phys. Solids, 44, 525-588. https://doi.org/10.1016/0022-5096(96)00001-4
- 5. Asaro, R.J., & Needleman, A. (1985). Texture development and strain hardening in rate dependent polycrystals. Acta Metall., 33, 923-953. https://doi.org/10.1016/0001-6160(85)90188-9
- 6. Balasubramanian, S., & Anand, L. (2002). Elasto-viscoplastic constitutive equations for polycrystalline fcc materials at low homologous temperatures. J. Mech. Phys. Solids, 50(1), 101-126. https://doi.org/10.1016/S0022-5096(01)00022-9
- 7. Bridier, F., McDowell, D.L., Villechaise, P., & Mendez, J. (2009). Crystal plasticity modeling of slip activity in Ti-6Al-4V under high cycle fatigue loading. Int. J. Plast., 25, 1066-1082. https://doi.org/10.1016/j.ijplas.2008.08.004
- 8. Buljak, V., Baivier-Romero, S., & Kallel, A. (2021). Calibration of Drucker-Prager Cap Constitutive Model for Ceramic Powder Compaction through Inverse Analysis. Materials, 14, 4044. https://doi.org/10.3390/ma14144044
- 9. Chen, X., Jiao, R., & Kim, K.S. (2005). On the Ohno-Wang kinematic hardening rules for multiaxial ratcheting modeling of medium carbon steel. Int. J. Plast., 21, 161-184. https://doi.org/10.1016/j.ijplas.2004.05.005
- 10. Dabiri, M., Lindroos, M., Andersson, T., Afkhami, S., Laukkanen, A., & Björk, T. (2018). Utilizing the theory of critical distances in conjunction with crystal plasticity for low-cycle notch fatigue analysis of S960 MC high strength steel. Int. J. Fatigue, 117, 257-273. https://doi.org/10.1016/j.ijfatigue.2018.07.042
- 11. Deng, G. (2014). Crystal plasticity finite element method simulation of equal channel angular pressing. University of Wollongong Press.
- 12. Faul, U. (2021). Dislocation structure of deformed olivine single crystals from conventional EBSD maps. Phys Chem Minerals, 48, 35. https://doi.org/10.1007/s00269-021-01157-3
- 13. FEPX: Finite Element Polycrystal Plasticity (2008). https://fepx.info
- 14. Frydrych, K., & Kowalczyk-Gajewska, K. (2016). A three-scale crystal plasticity model accounting for grain re finement in fcc metals subjected to severe plastic deformations. Mater. Sci. Eng. A, 658, 490-502. https://doi.org/10.1016/j.msea.2016.01.101
- 15. Genna, F. (1993). Integration of plasticity equations for the case of Ziegler's kinematic hardening. Comput. Meth ods Appl. Mech. Eng., 109, 111-130. https://doi.org/10.1016/0045-7825(93)90227-O
- 16. Ibragimova, O., Brahme, A., Muhammad, W., Lévesque, J., & Inal, K. (2021). A new ANN based crystal plasticity model for FCC materials and its application to non-monotonic strain paths. Int. J. Plast., 144, 103059. https://doi.org/10.1016/j.ijplas.2021.103059
- 17. Jeong, J., & Voyiadjis, G.Z. (2022). A physic-based crystal plasticity model for the prediction of the dislocation densities in micropillar compression. J. Mech. Phys. Solids., 167, 105006. https://doi.org/10.1016/j.jmps.2022.105006
- 18. Khan, R., & Alfozan, A. (2019). Modeling of twinning-induced plasticity using crystal plasticity and thermodynamic framework. Acta Mech., 230, 2687-2715. https://doi.org/10.1007/s00707-019-02419-6
- 19. Khan, R., Pervez, T., Alfozan, A., Qamar, S.Z., & Mohsin, S. (2022). Numerical Modeling and Simulations of Twinning-Induced Plasticity Using Crystal Plasticity Finite Element Method. Crystals, 12, 930. https://doi.org/10.3390/cryst12070930
- 20. Khan, R., Zahedi, F.I., & Siddiqui, A.K. (2016). Numerical Modeling of Twinning Induced Plasticity in Austenite Based Advanced High Strength Steels. Procedia Manuf., 5, 772-786. https://doi.org/10.1016/j.promfg.2016.08.063
- 21. Li, C., Cao, F., Chen, Y., Wang, H., & Dai, L. (2022). Crystal Plasticity Model Analysis of the Effect of Short-Range Order on Strength-Plasticity of Medium Entropy Alloys. Metals, 12, 1757. https://doi.org/10.3390/met12101757
- 22. Li, H., Larsson, F., Colliander, M.H., & Ekh, M. (2021). Elastic-viscoplastic self-consistent modeling for finite deformation of polycrystalline materials. Mater Sci Eng. A., 799, 140325. https://doi.org/10.1016/j.msea.2020.140325
- 23. Li, Y.L., Kohar, C.P., Mishra, R.K., & Inal, K. (2020). A new crystal plasticity constitutive model for simulating precipitation-hardenable aluminum alloys. Int. J. Plast., 132, 102759. https://doi.org/10.1016/j.ijplas.2020.102759
- 24. Liu, G., Mo, H., Wang, J., & Shen, Y. (2021). Coupled crystal plasticity finite element-phase field model with kinetics-controlled twinning mechanism for hexagonal metals. Acta Mater., 202, 399-416. https://doi.org/10.1016/j.actamat.2020.11.002
- 25. Men, M., & Meng, B. (2022). Crystal Plasticity Simulation of Yield Loci Evolution of SUS304 Foil. Materials, 15, 1140. https://doi.org/10.3390/ma15031140
- 26. Messner, M.C., Rhee, M., Arsenlis, A., & Barton, N.R. (2017). A crystal plasticity model for slip in hexagonal close packed metals based on discrete dislocation simulations. Modelling Simul. Mater. Sci. Eng., 25, 044001. https://doi.org/10.1088/1361-651X/aa687a
- 27. Mlikota, M., & Schmauder, S. (2018). On the Critical Resolved Shear Stress and Its Importance in the Fatigue Performance of Steels and Other Metals with Different Crystallographic Structures. Metals, 8, 883. https://doi.org/10.3390/met8110883
- 28. Nguyen, K., Zhang, M., Amores, V.J., Sanz, M.A., & Montáns, F.J. (2021). Computational Modeling of Dislocation Slip Mechanisms in Crystal Plasticity: A Short Review. Crystals, 11, 42. https://doi.org/10.3390/cryst11010042
- 29. Nibur, K.A., & Bahr, D.F. (2003). Identifying slip systems around indentations in FCC metals. Comput. Mater. Sci., 49, 1055-1060. https://doi.org/10.1016/j.scriptamat.2003.08.021
- 30. Okereke, M., & Keates, S. (2018). Finite Element Applications. A Practical Guide to the FEM Process. Springer.
- 31. Paudel, Y., Giri, D., Priddy, M.W., Barrett, C.D., Inal, K., Tschopp, M.A., Rhee, H., & El Kadiri, H. (2021). A Review on Capturing Twin Nucleation in Crystal Plasticity for Hexagonal Metals. Metals, 11, 1373. https://doi.org/10.3390/met11091373
- 32. Perez, N. (2017). Theory of Elasticity. Springer.
- 33. Pramanik, S., Tasche, L., Hoyer, K.P., & Schaper, M. (2021). Correlation between Taylor Model Prediction and Transmission Electron Microscopy-Based Microstructural Investigations of Quasi-In Situ Tensile Deformation of Additively Manufactured FeCo Alloy. J. Mater. Eng. Perform., 30, 8048-8056. https://doi.org/10.1007/s11665-021-06065-9
- 34. Ramos, P.M., Herranz, M., Foteinopoulou, K., Karayiannis, N.Ch., & Laso, M. (2020). Identification of Local Structure in 2-D and 3-D Atomic Systems through Crystallographic Analysis. Crystals, 10, 1008. https://doi.org/10.3390/cryst10111008
- 35. Remache, D., Semaan, M., Rossi, J.M., Pithioux, M., & Milan, J.L. (2020). Application of the Johnson-Cook plasticity model in the finite element simulations of the nanoindentation of the cortical bone. J. Mech. Behav. Biomed. Mater., 101, 103426. https://doi.org/10.1016/j.jmbbm.2019.103426
- 36. Romanova, V., Balokhonov, R., Zinovieva, O., Lychagin, D., Emelianova, E., & Dymnich, E. (2022). Mechanical Aspects of Nonhomogeneous Deformation of Aluminum Single Crystals under Compression along [100] and [110] Directions. Metals, 12, 397. https://doi.org/10.3390/met12030397
- 37. Ryś, M., Stupkiewicz, S., & Petryk, H. (2022). Micropolar regularization of crystal plasticity with the gradient enhanced incremental hardening law. Int. J. Plast., 156, 103355. https://doi.org/10.1016/j.ijplas.2022.103355
- 38. Sajjad, H.M., Hanke, S., Güler, S., ul Hassan, H., Fischer, A., & Hartmaier, A. (2019). Modelling Cyclic Behaviour of Martensitic Steel with J2 Plasticity and Crystal Plasticity. Materials, 12, 1767. https://doi.org/10.3390/ma12111767
- 39. Schäfer, B.J., Song, X., Sonnweber-Ribic, P., ul Hassan, H., & Hartmaier, A. (2019). Micromechanical Modelling of the Cyclic Deformation Behavior of Martensitic SAE 4150 - A Comparison of Different Kinematic Hard ening Models. Metals, 9, 368. https://doi.org/10.3390/met9030368
- 40. Sundararaghavan, V., & Zabaras, N. (2008). A multi-length scale sensitivity analysis for the control of texture dependent properties in deformation processing. Int. J. Plast., 24, 1581-1605. https://doi.org/10.1016/j.ijplas.2007.12.005
- 41. Weinberger, C.R., Boyce, B.L., & Battaile, C.C. (2013). Slip planes in bcc transition metals. Int. Mater. Rev., 58, 296-314. https://doi.org/10.1179/1743280412Y.0000000015
- 42. Wójcik, M., & Skrzat, A. (2020). Fuzzy logic enhancement of material hardening parameters obtained from ten sion-compression test. Continuum Mech. Thermodyn., 32, 959-969. https://doi.org/10.1007/s00161-019-00805-y
- 43. Wójcik, M., & Skrzat, A. (2021). The Coupled Eulerian-Lagrangian Analysis of the KOBO Extrusion Process. ASTRJ, 15, 197-208. https://doi.org/10.12913/22998624/131663
- 44. Wójcik, M., & Skrzat, A. (2022a). An Elastic-Plastic Analysis of Polycrystalline Structure Using Crystal Plasticity Modelling - Theory and Benchmark Tests. ASTRJ, 16, 163-177. https://doi.org/10.12913/22998624/154025
- 45. Wójcik, M., & Skrzat, A. (2022b). Coupled Thermomechanical Eulerian-Lagrangian Analysis of the KOBO Extrusion Process. Arch. Metall. Mater., 67, 1185-1193. https://doi.org/10.24425/amm.2022.139719
- 46. Wójcik, M., & Skrzat, A. (2022c). Numerical modelling of the KOBO extrusion process using the Bodner-Partom material model. Meccanica, 57, 2213-2230. https://doi.org/10.1007/s11012-022-01569-7
- 47. Yaghoobi, M., Ganesan, G., Sundar, S., Lakshmanam, A., Rudraraju, S., Allison, J.E., & Sundararaghavan, V. (2019). PRISMS-Plasticity: An open-source crystal plasticity finite element software. Comput. Mater. Sci., 169, 109078. https://doi.org/10.1016/j.commatsci.2019.109078
- 48. Yang, G., & Park, S.-J. (2003). Deformation of Single Crystals, Polycrystalline Materials, and Thin Films: A Review. Materials, 12, 2003. https://doi.org/10.3390/ma12122003
- 49. Yang, G., Dayong, A., Fengbo, H., Liu, X., Guozheng, K., & Xu, Z. (2022). Multiple-mechanism and microstructure-based crystal plasticity modeling for cyclic shear deformation of TRIP steel. Int. J. Mech. Sci., 222, 107269. https://doi.org/10.1016/j.ijmecsci.2022.107269
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-49eb7337-39b0-4d40-8070-8d2d91d766f6