PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Geochemistry of surface sediments from the northwestern Gulf of Mexico : implications for provenance and heavy metal contamination

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Thirty-five near-surface sediment samples were recovered from the continental shelf and upper slope regions of the north-western (NW) Gulf of Mexico. The geochemical data of the sediments recovered were examined to investigate the weathering intensity, provenance, palaeo-oxygenation condition, and level of heavy metal contamination. The sediments analysed showed a moderate to high intensity of chemical weathering. Major and trace element concentrations indicated a terrigenous origin, closely related to the weathering of rocks rich in aluminosilicates. The results of this study further revealed that major rivers, the Bravo and Soto La Marina, played an important role in delivering sediments to the study area. The concentration of transition trace elements such as Cr, Cu, Ni, and V revealed that the sediments were derived from intermediate rocks such as andesite. The V/Cr, Ni/Co, and Cu/Zn ratios in the sediments were <2, <5, and <1, respectively, suggesting a depositional process occurred under well-oxygenated conditions. Principle Component Analysis (PCA) did not show a significant difference in sediment texture between the continental shelf and slope areas. The enrichment factor (EF) and Geo-accumulation index (lgeo) values were <2 and <1, respectively, suggesting the absence of an anthropogenic input.
Rocznik
Strony
522--538
Opis fizyczny
Bibliogr. 116 poz., rys., tab., wykr.
Twórcy
  • Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, Unidad de Procesos Oceánicos y Costeros, Circuito Exterior s/n, 04510 CDMX., México
  • Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, Unidad de Procesos Oceánicos y Costeros, Circuito Exterior s/n, 04510 CDMX., México
  • Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, Unidad de Procesos Oceánicos y Costeros, Circuito Exterior s/n, 04510 CDMX., México
autor
  • Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, Unidad de Procesos Oceánicos y Costeros, Circuito Exterior s/n, 04510 CDMX., México
Bibliografia
  • 1. Acevedo, D., Jiménez, B., Rodriguez, C., 2006. Trace metals in sediments of two estuarine lagoons from Puerto Rico. Environmental Pollution, 141: 336-342.
  • 2. Anaya-Gregorio, A., Armstrong-Altrin, J.S., Machain-Castillo, M.L., Montiel-García, P.C., Ramos-Vázquez, M.A., 2018. Textural and geochemical characteristics of late Pleistocene to Holocene fine-grained deep-sea sediment cores (GM6 and GM7), recovered from southwestern Gulf of Mexico. Journal of Palaeogeography, 7: 253-271.
  • 3. Armstrong-Altrin, J.S., 2009. Provenance of sands from Cazones, Acapulco, and Bahia Kino beaches, Mexico. Revista Mexicana de Ciencias Geologicas, 26: 764-782.
  • 4. Armstrong-Altrin, J.S., 2015. Evaluation of two multi-dimensional discrimination diagrams from beach and deep sea sediments from the Gulf of Mexico and their application to Precambrian clastic sedimentary rocks. International Geology Review, 57: 1446-1461.
  • 5. Armstrong-Altrin, J.S., Machain-Castillo, M.L., 2016. Mineralogy, geochemistry, and radiocarbon ages of deep sea sediments from the Gulf of Mexico, Mexico. Journal of South American Earth Sciences, 71: 182-200.
  • 6. Armstrong-Altrin, J.S., Natalhy-Pineda, O., 2014. Microtextures of detrital sand grains from the Tecolutla, Nautla, and Veracruz beaches, western Gulf of Mexico, Mexico: implications for depositional environment and palaeoclimate. Arabian Journal of Geosciences, 7: 4321-4333.
  • 7. Armstrong-Altrin, J.S, Lee, Y.I., Verma, S.P., Ramasamy, S., 2004. Geochemistry of sandstones from the upper Miocene Kudankulam Formation, southern India: implications for provenance, weathering, and tectonic setting. Journal of Sedimentary Research, 74: 285-297.
  • 8. Armstrong-Altrin, J.S., Lee, Y.I., Kasper-Zubillaga, J.J., Carranza-Edwards, A., Garcia, D., Eby, N., Balaram, V., Cruz-Ortiz, N., 2012. Geochemistry of beach sands along the Western Gulf of Mexico, Mexico: implication for provenance. Chemie der Erde Geochemistry, 72: 345-362.
  • 9. Armstrong-Altrin, J.S., Nagarajan, R., Madhavaraju, J., Rosalez-Hoz, L., Lee, Y.I., Balaram, V., Cruz-Martinez, A., Avila-Ramirez, G., 2013. Geochemistry of the Jurassic and upper Cretaceous shales from the Molango Region, Hidalgo, Eastern Mexico: implications of source-area weathering, provenance, and tectonic setting. Comptes Rendus Geoscience, 345: 185-202.
  • 10. Armstrong-Altrin, J.S., Nagarajan, R., Lee, Y.I., Kasper-Zubillaga, J.J., Córdoba-Saldaña, L.P., 2014. Geochemistry of sands along the San Nicolás and San Carlos beaches, Gulf of California, Mexico: implication for provenance. Turkish Journal of Earth Sciences, 23: 533-558.
  • 11. Armstrong-Altrin, J.S., Machain-Castillo, M.L., Rosales-Hoz, L., Carranza-Edwards, A., Sanchez-Cabeza, J.A., Ruíz-Fernández, A.C., 2015a. Provenance and depositional history of continental slope sediments in the Southwestern Gulf of Mexico unraveled by geochemical analysis. Continental Shelf Research, 95: 15-26.
  • 12. Armstrong-Altrin, J.S., Nagarajan, R., Balaram, V., Natalhy-Pineda, O., 2015b. Petrography and geochemistry of sands from the Chachalacas and Veracruz beach areas, western Gulf of Mexico, Mexico: constraints on provenance and tectonic setting. Journal of South American Earth Sciences, 64: 199-216.
  • 13. Armstrong-Altrin, J.S., Lee, Y.I., Kasper-Zubillaga, J.J., Trejo-Ramirez, E., 2017. Mineralogy and geochemistry of sands along the Manzanillo and El Carrizal beach areas, southern Mexico: implications for palaeoweathering, provenance, and tectonic setting. Geological Journal, 52: 559-582.
  • 14. Armstrong-Altrin, J.S., Ramos-Vázquez, M.A., Zavala-León, A.C., Montiel-García, P.C., 2018. Provenance discrimination between Atasta and Alvarado beach sands, western Gulf of Mexico, Mexico: constraints from detrital zircon chemistry and U-Pb geochronology. Geological Journal, 53: 2824-2848.
  • 15. Arora, A., Banerjee, S., Dutta, S., 2015. Black shale in late Jurassic Jhuran Formation of Kutch. Journal of the Geological Society of India, 85: 265-278.
  • 16. Bansal, U., Banerjee, S., Ruidas, D.K., Pande, K., 2018. Origin and geochemical characterization of the glauconites in the upper Cretaceous Lameta Formation, Narmada Basin, central India. Journal of Palaeogeography, 7: 99-116.
  • 17. Basu, A., 2017. Evolution of siliciclastic provenance inquiries: a critical appraisal. In: Sediment Provenance (ed. Rajat Mazumder): 5-23. Elsevier Amsterdam, Netherlands. Chapter 2. doi: 10.101 6/B978-0-1 2-803386-9.00002-2.
  • 18. Botello, A.V., Soto, L.A., Ponce-Veléz, G., Villanueva, F.S., 2015. Baseline for PAHs and metals in NW Gulf of Mexico related to the Deepwater Horizon oil spill. Estuarine, Coastal and Shelf Science, 156: 124-133.
  • 19. Bracciali, L., Marroni, M., Pandolfi, L., Rocchi, S., 2007. Geochemistry and petrography of western Tethys Cretaceous sedimentary covers (Corsica and Northern Apennines): from source areas to configuration of margins. In: Sedimentary provenance and petrogenesis: Perspectives from petrography and geochemistry, vol. 420 (eds. J. Arribas, S. Critelli, M.J. Johnsson): 73-93. Geological Society of America Special Paper.
  • 20. Carrasco-Núñez, G., Righter, K., Chesley, J., Siebert, L., Aranda-Gómez, J.J., 2005. Contemporaneous eruption of calc-alkaline and alkaline lavas in a continental arc (Eastern Mexican Volcanic Belt): chemically heterogeneous but isotopically homogeneous source. Contributions to Mineralogy and Petrology, 150: 423-440.
  • 21. Chaudhuri, A., Banerjee, S., Le Pera, E., 2018. Petrography of Middle Jurassic to early Cretaceous sandstones in the Kutch Basin, western India: implications on provenance and basin evolution. Journal of Palaeogeography, 7: 2.
  • 22. Chester, R., 2000. Marine Biogeochemistry. Blackwell Science Great Britain.
  • 23. Cullers, R.L., 2000. The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, USA: implications for provenance and metamorphic studies. Lithos, 51: 181-203.
  • 24. Cullers. R.L., Basu, A., Suttner, L.J., 1988. Geochemical signature of provenance in sand-size material in soils and stream sediments near the Tobacco Root batholith, Montana, USA. Chemical Geology, 70: 335-348.
  • 25. Dill, H., 1986. Metallogenesis of early Paleozoic graptolite shales from the Graefenthal Horst (northern Bavaria-Federal Republic of Germany). Economic Geology, 81: 889-903.
  • 26. Dill, H., Teshner, M., Wehner, H., 1988. Petrography, inorganic and organic geochemistry of Lower Permian Carboniferous fan sequences (“Brandschiefer Series”) FRG: constraints to their paleogeography and assessment of their source rock potential. Chemical Geology, 67: 307-325.
  • 27. Dypvik, H., 1984. Geochemical compositions and depositional conditions of Upper Jurassic and Lower Cretaceous Yorkshire clays, England. Geological Magazine, 121: 489-504.
  • 28. Etemad-Saeed, N., Hosseini-Barzi, M., Adabi, M.H, Sadeghi, A., Houshmandzadeh, A., 2015. Provenance of Neoproterozoic sedimentary basement of northern Iran, Kahar Formation. Journal of African Earth Sciences, 111: 54-75.
  • 29. Fedo, C.M., Nesbitt, H.W., Young, G.M., 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 10: 921-924.
  • 30. Gabrielli, P., Wegner, A., Petit, J.R., Delmonte, B., De Deckker, P., Gaspari, V., Fischer, H., Ruth, U., Kriews, M., Boutron, C., Cescon, P., Barbante, C., 2010. A major glacial-interglacial change in aeolian dust composition inferred from rare earth elements in Antarctic ice. Quaternary Science Reviews, 29: 265-273.
  • 31. Garver, J.I., Royce, P.R., Smick, T.A., 1996. Chromium and nickel in shale of the Taconic Foreland: a case study for the provenance of fine-grained sediments with an ultramafic source. Journal of Sedimentary Research, 66: 100-106.
  • 32. Hair, J.F., Anderson, R.E., Taham, R.L., William, C.B., 2001. Análisis Multivariante. 5a Ed. Prentice Hall: 794.
  • 33. Hallberg, R.O., 1976. A geochemical method for investigation of palaeoredox conditions in sediments. Ambio Special Report, 4: 139-147.
  • 34. Harnois, L., 1988. The CIW index: a new chemical index of weathering. Sedimentary Geology, 55: 319-322.
  • 35. Hernández-Hinojosa, V., Montiel-García, P.C., Armstrong-Altrin, J.S., Nagarajan, R., Kasper-Zubillaga, J.J., 2018. Textural and geochemical characteristics of beach sands along the western Gulf of Mexico, Mexico. Carpathian Journal of Earth and Environmental Sciences, 13: 161-174.
  • 36. Herron, M.M., 1988. Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Petrology, 58: 820-829.
  • 37. Hou, Q., Mou, C., Wang, Q., Tan, Z., 2017. Provenance and tectonic setting of the Early and Middle Devonian Xueshan Formation, the North Qilian Belt, China. Geological Journal 1-19 doi: 10.1002/gj.2963.
  • 38. Hu, G., Hu, W-X., Cao, J., Yang, R-F., Chen, H-Y., Zhao, D-F., Pang, Q., Wang, H-Y., Tan, X-C., 2017. The distribution, hydrocarbon potential, and development of the Lower Cretaceous black shales in coastal southeastern China. Journal of Palaeogeography, 6: 333-351.
  • 39. Hua, G., Yuansheng, D., Lian, Z., Jianghai, Y., Hu, H., Min, L., Yuan, W., 2013. Trace and rare earth elemental geochemistry of carbonate succession in the Middle Gaoyuzhuang Formation, Pingquan Section: Implications for Early Mesoproterozoic Ocean redox conditions. Journal of Palaeogeography, 2: 209-221.
  • 40. Jones, B., Manning, D.C., 1994. Comparison of geochemical indices used for the interpretation of paleo-redox conditions in Ancient mudstones. Chemical Geology, 111: 111-129.
  • 41. Kasper-Zubillaga, J.J., Armstrong-Altrin, J.S., Carranza-Edwards, A., Morton-Bermea, O., Lozano-Santa-Cruz, R., 2013. Control in beach and dune sands of the Gulf of Mexico and the role of nearby rivers. Iniernational Journal of Geosciences, 4: 1157-1174.
  • 42. Kasper-Zubillaga, J.J., Arellano-Torres, E., Armstrong-Altrin, J.S., 2019. Physical degradation and early diagenesis in foraminiferal tests after subaerial exposure in terrigenous-depleted beaches of Yucatan, Mexico. Carbonates and Evaporites, doi: https://doi.org/10.1007/s13146-019-00485-4.
  • 43. Kelepile, T., Betsi, T.B., Franchi, F., Shemang, E., Suh, C.E., 2017. Provenance and tectonic setting of the Neoproterozoic clastic rocks hosting the Banana Zone Cu-Ag mineralisation, northwest Botswana. Journal of African Earth Sciences, 129: 853-869.
  • 44. Khan, R., Rouf, M.A., Das, S., Tamin, U., Naher, K., Podder, J., Hossain, S.M., 2017. Spatial and multi-layered assessment of heavy metals in the sand of Coxs-Bazar beach of Bangladesh. Regional Studies in Marine Science, 16: 171-180.
  • 45. Le Bas, M.J., Le Maitre, R.W., Streckeisen, A., Zanettin, B., 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27: 745-750.
  • 46. Lee, Y.I., 2009. Geochemistry of shales of the Upper Cretaceous Hayang Group, SE Korea: implications for provenance and source weathering at an active continental margin. Sedimentary Geology, 215: 1-12.
  • 47. Lin, C-M., Zhang, X., Zhang, N., Chen, S-Y, Liu, M., 2014. Provenance records of the north Jiangsu Basin, east China: zircon U-Pb geochronology and geochemistry from the Paleogene Dainan Formation in the Gaoyou Sag. Journal of Palaeogeography, 3: 99-114.
  • 48. Liu, B., Jin, H.L., Sun, L.Y., Sun, Z., Niu, Q.H., Zhang, C.X., 2016. Geochemical characteristics of Holocene aeolian deposits and their environmental significance in the Mu Us desert, northern China. Geological Journal, 51: 325-337.
  • 49. Long, E.R., Macdonald, D.D., Smith, S.L., 1995. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environmental Management, 1: 81-97.
  • 50. Ma, K., Hu, S., Wang, T., Zhang, B., Qin, S., Shi, S., Wang, K., Qingyu, H., 2017. Sedimentary environments and mechanisms of organic matter enrichment in the Mesoproterozoic Hongishuizhuang Formation of northern China. Palaeogeography, Paleoclimatology, Palaeoecology, 475: 176-187.
  • 51. Ma, M., Chen, G., Lyu, C., Zhang, G., Li, C., Yan, Y., Ma, Z., 2019. The formation and evolution of the paleo-Pearl River and its influence on the source of the northern South China Sea. Marine and Petroleum Geology, 106: 171-189.
  • 52. Madhavaraju, J., 2015. Geochemistry of Campanian-Maastrichtian sedimentary rocks in the Cauvery Basin, South India: Constrains on paleoweathering, provenance and end Cretaceous environments. Chemostratigraphy: Concepts, Techniques and Applications (ed. M. Ramkumar): 185-214. Elsevier Special Volume.
  • 53. Madhavaraju, J., Lee, Y.I., 2010. Influence of Deccan Volcanism in the sedimentary rocks of Late Maastrichtian-Danian age of Cauvery Basin, Southeastern India: constraints from Geochemistry. Current Science, 98: 528-537.
  • 54. Madhavaraju, J., Tom, M., Lee, Y.I., Balaram, V., Ramasamy, S., Carranza-Edwards, A., Ramachandran, A., 2016. Provenance and tectonic settings of sands from Puerto Peñasco, Desemboque and Bahia Kino beaches, Gulf of California, Sonora, Mexico. Journal of South American Earth Sciences, 71: 262-275.
  • 55. Madhavaraju, J., Pacheco-Olivas, S.A., González-León, C.M., Espinoza-Maldonado, I.G., Sanchez-Medrano, P.A., Villanueva-Amadoz, U., Monreal, R., Pi-Puig, T., Ramirez-Montoya, E., Grijalva-Noriega, F.J., 2017. Mineralogy and geochemistry of the Lower Cretaceous siliciclastic rocks of the Morita Formation, Sierra San José section, Sonora, Mexico. Journal of South American Earth Sciences, 76: 397-411.
  • 56. Madhavaraju, J., Saucedo-Samaniego, J.C., Loser, H., Espinoza-Maldonado, I.G., Solari, L., Monreal, R., Grijalva-Noriega, F.J., Jaques-Ayala, C., 2018. Detrital zircon record of Mesozoic volcanic arcs in the Lower Cretaceous Mural Limestone, Northwestern Mexico. Geological Journal: 1-25. https://doi.org/10.1002/gj.3315.
  • 57. Martinez, N.C., Murray, R.W., Thunel, R.C., Peterson, L.C., Muller-Karger, F., Lorenzoni, L., Astor, Y., Varela, R., 2010. Local and regional geochemical signatures of surface sediments from the Cariaco Basin and Orinoco Delta, Venezuela. Geology, 38: 159-162.
  • 58. McLennan, S.M., Hemming, S., McDaniel, D.K., Hanson, G.N., 1993. Geochemical approaches to sedimentation, provenance, and tectonics. In: Processes Controlling the Composition of Clastic Sediments (eds. M.J. Johnsson and A. Basu): 21-40. Geological Society of America Special Paper.
  • 59. Monreal-Gómez, M.A., Salas de León, D.A., 1990. Simulación de la circulación de la Bahia de Campeche. Geofisica International, 29: 101-111.
  • 60. Morford, J.L., Emerson, S., 1999. The geochemistry of redox sensitive trace metals in sediments. Geochimica et Cosmochimca Acta, 63: 1735-1750.
  • 61. Müller, G., 1969. Index of geoaccumulation in sediments of the Rhine River. Geojournal, 2: 108-118.
  • 62. Müller, G., 1979. Schwermetalle in den sedimenten des Rheins-Veranderungen seitt 1971. Umschan, 79: 778-783.
  • 63. Murray, R.W., Leinen, M., 1996. Scavenged excess aluminum and its relationship to bulk titanium in biogenic sediment from the central equatorial Pacific Ocean. Geochimica et Cosmochimica Acta, 60: 3869-3878.
  • 64. Nagarajan, R., Armstrong-Altrin, J.S., Kessler, F.L., Hidalgo-Moral, E.L., Dodge-Wan, D., Taib, N.I., 2015. Provenance and tectonic setting of Miocene siliciclastic sediments, Sibuti formation, northwestern Borneo. Arabian Journal of Geosciences, 8: 8549-8565.
  • 65. Nagarajan, R., Armstrong-Altrin, J.S., Kessler, F.L., Jong, J., 2017. Petrological and geochemical constraints on provenance, paleo-weathering and tectonic setting of clastic sediments from the Neogene Lambir and Sibuti Formations, Northwestern Borneo. In: Sediment Provenanc (ed. Rajat Mazumder): 123-153 e. Elsevier Amsterdam, Netherlands. Chapter 7. doi: 10.1016/B978-0-12-803386-9.00007-1.
  • 66. Ndjigui, P-D., Bayiga, E.C., Onana, V.L., Djenabou-Fadil, S., Ngono, G.S.A., 2019. Mineralogy and geochemistry of recent alluvial sediments from the Ngaye River watershed, northern Cameroon: implications for the surface processes and Au-PGE distribution. Journal of African Earth Sciences, 150: 136-157.
  • 67. Nesbitt, H.W., Young, G.M., 1982. Early Proterozoic climate and plate motions inferred from major element chemistry of lutites. Nature, 299: 715-717.
  • 68. Nesbitt, H.W., Fedo, C.M., Young, G.M., 1997. Quartz and feldspar stability, steady and non-steady-state weathering, and petrogenesis of siliciclastic sands and muds. Journal of Geology, 105: 173-192.
  • 69. Ortega-Gutierrez, F., Ruiz, J., Centeno-Garcia, E., 1995. Oaxaquia, a Proterozoic microcontinent accreted to North America during the late Paleozoic. Geology, 23: 1127-1130.
  • 70. Ouyang, Y., 2005. Evaluation of river water quality monitoring stations by principal component analysis. Water Research, 39: 2621-2635.
  • 71. Paikaray, S., Banerjee, S., Mukherji, S., 2008. Geochemistry of shales from the Paleoproterozoic to Neoproterozoic Vindhyan Supergroup: implications on provenance, tectonics and paleoweathering. Journal of Asian Earth Sciences, 32: 34-48.
  • 72. Pandey, S., Parcha, S.K., 2017. Provenance, tectonic setting and source-area weathering of the lower Cambrian sediments of the Parahio valley in the Spiti basin, India. Journal of Earth System Science, 126: 27.
  • 73. Parker, A., 1970. An index of weathering for silicate rocks. Geological Magazine, 107: 501-504.
  • 74. Prabakaran, K., Nagarajan, R., Eswaramoorthi, S., Anandkumar, A., Franco, F.M., 2019. Environmental significance and geochemical speciation of trace elements in Lower Baram River sediments. Chemosphere, 219: 933-953.
  • 75. Price, J.R., Velbel, M.A., 2003. Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rocks. Chemical Geology, 202: 397-416.
  • 76. Qiu, S., Zhu, Z., Yang, T., Wu, Y., Bai, Y., Ouyang, T., 2014. Chemical weathering of monsoonal eastern China: implications from major elements of topsoil. Journal of Asian Earth Sciences, 81: 77-90.
  • 77. Ramachandran, A., Madhavaraju, J., Ramasamy, S., Lee, Y.I., Rao, S., Chawngthu, D.L., Velmurugan, K., 2016. Geochemistry of Proterozoic clastic rocks of the Kerur Formation of Kaladgi-Badami Basin, North Karnataka, South India: implications for paleoweathering and provenance. Turkish Journal of Earth Sciences, 25: 126-144.
  • 78. Ramos-Vázquez, M., Armstrong-Altrin, J.S., Rosales-Hoz, L., Machain-Castillo, M.L., and Carranza-Edwards, A., 2017. Geochemistry of deep-sea sediments in two cores retrieved at the mouth of the Coatzacoalcos river delta, Western Gulf of Mexico, Mexico. Arabian Journal of Geosciences, 10: 148.
  • 79. Ramos-Vázquez, M.A., Armstrong-Altrin, J.S., Machain-Castillo, M.L., Gío-Argáez, F.R. 2018. Foraminiferal assemblages, 14C ages, and compositional variations in two sediment cores in the western Gulf of Mexico. Journal of South American Earth Sciences, 88: 480-496.
  • 80. Riquier, L., Tribovillard, N., Averbuch, O., Devleeschouwer, X., Riboulleau, A., 2006. The late Frasnian Kellwasser horizons of the Harz Mountains (Germany): two oxygen-deficient periods resulting from different mechanisms. Chemical Geology, 233: 137-155.
  • 81. Rosales-Hoz, L., Carranza-Edwards, A., Martínez-Serrano, R., Alatorre, M.A, Armstrong-Altrin, J.S., 2015. Textural and geochemical characteristics of marine sediments in the SW Gulf of Mexico: implications for source and seasonal change. Environmental Monitoring and Assessment, 187-205: 1-19.
  • 82. Roser, B.P., Korsch, R.J., 1988. Provenance signatures of sandstone-mudstone suites determined using discrimination function analysis of major-element data. Chemical Geology, 67: 119-139.
  • 83. Salas de León, D.A., Monreal-Gomez, M.A., Colunga-Enríquez, G., 1992. Hidrografia y circulación geostrófica en el sur de la Bahia de Campeche. Geofisica Internacional, 31: 315-323.
  • 84. Salas-Monreal, D., Marin-Hernandez, M., Salas-Perez, J.J., Salas-de-Leon, D.A., Monreal-Gomez, M.A., Perez-España, H., 2018. Coral reef connectivity within the Western Gulf of Mexico. Journal of Marine Systems, 179: 88-99.
  • 85. Schaaf, P., Stimac, J., Siebe, C., Macías, J.L., 2005. Geochemical evidence for mantle origin and crustal processes in volcanic rocks from Popocatépetl and surrounding monogenetic volcanoes, Central Mexico. Journal of Petrology, 46: 1243-1282.
  • 86. Selvaraj, K., Ram, V., Szefer, P., 2004. Evaluation of metal contamination in coastal sediments Bay of Bengal, India: geochemical and statistical approaches. Marine Pollution Bulletin, 49: 174-185.
  • 87. Shaw, T.J., Geiskes, J.M., Jahnke, R.A., 1990. Early diagenesis in differing depositional environments: the response of transition metals in pore water. Geochimica et Cosmochimica Acta, 54: 1233-1246.
  • 88. Shepard, F.P., 1954. Nomenclature based on sand-silt-clay ratios. Journal of Sedimentary Petrology, 24: 151-158.
  • 89. Spalletti, L.A., Remírez, M.N., Sagasti, G., 2019. Geochemistry of aggradational - progradational sequence sets of the Upper Jurassic - Lower Cretaceous Vaca Muerta shales (Añelo area, Neuquén Basin, Argentina): Relation to changes in accommodation and marine anoxia. Journal of South American Earth Sciences, https://doi.org/10.1016/ j.jsames.2019.02.011.
  • 90. Taheri, A., Jafarzadeh, M., Armstrong-Altrin, J.S., Mirbagheri, S.R., 2018. Geochemistry of siliciclastic rocks from the Shemshak Group (Upper Triassic-Lower-Middle Jurassic), northeastern Alborz, northern Iran: implications for palaeoweathering, provenance, and tectonic setting. Geological Quarterly, 62 (3): 522-535.
  • 91. Tamayo, J.L., 1991. Geografia Moderna de México, 11th ed. Trillas, México City.
  • 92. Tapia-Fernandez, H.J., Armstrong-Altrin, J.S., Selvaraj, K., 2017. Geochemistry and U-Pb geochronology of detrital zircons in the Brujas beach sands, Campeche, Southwestern Gulf of Mexico, Mexico. Journal of South American Earth Sciences, 76: 346-361.
  • 93. Tawfik, H.A., Ghandour, I.M., Maejima, W., Armstrong-Altrin, J.S., Abdel-Hameed, A-M.T., 2017. Petrography and geochemistry of the siliciclastic Araba Formation (Cambrian), east Sinai, Egypt: Implications for provenance, tectonic setting and source weathering. Geological Magazine, 154: 1-23.
  • 94. Tawfik, H.A., Salah, M.K., Maejima, W., Armstrong-Altrin, J.S., Abdel-Hameed, A-M.T., Ghandour, M.M.E., 2018. Petrography and geochemistry of the Lower Miocene Moghra sandstones, Qattara Depression, north Western Desert, Egypt. Geological Journal, 53: 1938-1953.
  • 95. Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: its Composition and Evolution. Oxford, UK. Blackwell.
  • 96. Tzifas, I.T., Papadopoulos, A., Misaelides, P., Godelitsas, A., GŘttlicher, J., Tsikos, H., Gamaletsos, P.N., Luvizotto, G., Karydas, A.G., Petrelli, M., Noli, F., Kantarelou, V., Kontofakas, A., Hatzidimitriou, A., 2019. New insights into mineralogy and geochemistry of allanite-bearing Mediterranean coastal sands from Northern Greece. Geochemistry, 79: 247-267.
  • 97. Velmurugan, K., Madhavaraju, J., Balaram, V., Ramasamy, S., Ramachandran, A., Ramirez-Montoya, E., Saucedo-Samaniego, J.C., 2019. Provenance and tectonic setting of the clastic rocks of the Kerur Formation, Badami Group, Mohare area, Karnataka, India. In: Precambrian Crustal Evolution of India: Geological Evolution of the Precambrian Indian Shield (ed. M.E.A. Mondal): 239-269. Society of Earth Scientist Series by Springer-Verlag, 1st Edition.
  • 98. Verma, S.P., 1999. Geochemistry of evolved magmas and their relationship to subduction-unrelated mafic volcanism at the volcanic front of the central Mexican Volcanic Belt. Journal of Volcanology and Geothermal Research, 93: 151-171.
  • 99. Verma, S.P., 2000. Geochemical evidence fora lithospheric source for magmas from Los Humeros caldera, Puebla, Mexico. Chemical Geology, 164: 35-60.
  • 100. Verma, S.P., 2001a. Geochemical evidence fora Rift-Related Origin of bimodal volcanism at Meseta Rio San Juan, North-Central Mexican Volcanic Belt. International Geology, Review, 43: 475-493.
  • 101. Verma, S.P., 2001b. Geochemical evidence for a lithospheric source for magmas from Acoculco Caldera, Eastern Mexican Volcanic Belt. International Geology Review, 43: 31-51.
  • 102. Verma, S.P., 2005. Estadística Básica para el Manejo de Datos Experimentales: Aplicación a la Geoquimica (Geoquimiometria) (in Spanish). Universidad Nacional Autónoma de México, México, D.F.
  • 103. Verma, S.P., 2015. Origin, evolution, and tectonic setting of the eastern part of the Mexican Volcanic Belt and comparison with the Central American Volcanic Arc from conventional multielement normalized and new multdimensional discrimination diagrams and discordancy and significance tests. Turkish Journal of Earth Sciences, 24: 111-164.
  • 104. Verma, S.P., Armstrong-Altrin, J.S., 2013. New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins. Chemical Geology, 355: 117-180.
  • 105. Verma, S.P., Armstrong-Altrin, J.S., 2016. Geochemical discrimination of siliciclastic sediments from active and passive margin settings. Sedimentary Geology, 332: 1-12.
  • 106. Verma, S.P., Díaz-González, L., Armstrong-Altrin, J.S., 2016. Application of a new computer program for tectonic discrimination of Cambrian to Holocene clastic sediments. Earth Science Informatics, 9: 151-165.
  • 107. Wang, Z., Wang, J., Fu, X., Zhan, W., Yu, F., Feng, X., Song, C., Chen, W., Zeng, S., 2017. Organic material accumulation of Carnian mudstones in the North Qiangtang Depression, eastern Tethys: conirolled by the paleoclimate, paleoenvironment, and provenance. Marine and Petroleum Geology, 88: 44-457.
  • 108. Wang, Z., Wang, J., Fu, X., Zhan, W., Armstrong-Altrin, J.S., Yu, F., Feng, X., Song, C., Zeng, S., 2018. Geochemistry of the Upper Triassic black mudstones in the Qiangtang Basin, Tibet: implications for paleoenvironment, provenance, and tectonic setting. Journal of Asian Earth Sciences, 160: 118-135.
  • 109. Wedepohl, H.K., 1995. The composition of the continental crust. Geochimica et Cosmochimica Acta, 59: 1217-1232.
  • 110. Xie, Y., Chi, Y., 2016. Geochemical investigation of dry- and wet-deposited dust during the same dust-storm event in Harbin, China: constraint on provenance and implications for formation of aeolian loess. Journal of Asian Earth Sciences, 120: 43-61.
  • 111. Yang, J-H., Du, Y-S., 2017. Weathering geochemistry and palaeoclimate implication of the Early Permian mudstones from eastern Henan Province, North China. Journal of Palaeogeography, 6: 370-380.
  • 112. Yañez-Arancibia, A., Day, J.W. Jr., 1982. Ecological characterization of Terminos Lagoon: a tropical lagoon estuarine system in the southern Gulf of Mexico. Oceanologica Acta, 5: 431-500.
  • 113. Zaid, S.M., 2013. Provenance, diagenesis, tectonic setting and reservoir quality of the sandstones of the Kareem Formation, Gulf of Suez, Egypt. Journal of African Earth Sciences, 85: 31-52.
  • 114. Zaid, S.M., 2017. Provenance of coastal dune sands along Red Sea, Egypt. Journal of Earth System Science, 126: 50.
  • 115. Zaid, S.M., Gahtani, F.A., 2015. Provenance, diagenesis, tectonic setting and geochemistry of Hawkesbury sandstone (Middle Triassic), southern Sydney Basin, Australia. Turkish Journal of Earth Sciences, 24: 72-98.
  • 116. Zhang, S., Hu, Z., Wang, H., 2018. A retrospective review of microbiological methods applied in studies following the deep-water horizon oil spill. Frontiers in Microbiology, 9: 520.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-49ea4499-32db-411a-8fab-61325003e44d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.