Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper investigates an algorithm for finding steady-states in electromechanical systems for the cases of their periodic nature. The algorithm enables to specify the steady-state solution identified directly in time domain. The basis for such an algorithm is a discrete differential operator that specifies the values of the first derivative of the periodic function in the selected set of points on the basis of the values of that function in the same set of points. It creates algebraic equations describing the steady-state solution for the nonlinear differential equations describing electromechanical systems. In this paper, the direct time-domain approach is tested for the simple converter considering. The algorithm used in this paper is competitive with respect to the one known in literature an approach based on the harmonic balance method operated in frequency domain.
Słowa kluczowe
Rocznik
Tom
Strony
645--653
Opis fizyczny
Bibliogr. 38 poz., rys., wykr.
Twórcy
autor
- Cracow University of Technology, Institute on Electromechanical Energy Conversion, Warszawska Str. 24, 31-155 Cracow, Poland
autor
- Technical Institute, State Higher Vocational School in Nowy Sącz, Zamenhofa 1a, 33-300 Nowy Sącz, Poland
Bibliografia
- [1] D.C. With and H.H. Woodson, Electromechanical energy conversion, J. Wiley &Sons, New York, (1959).
- [2] A. Puchała, Dynamics of electrical machines and electro- mechanical systems, PWN, Warsaw, 1977, [in Polish],
- [3] T.J. Sobczyk, Methodological aspects of mathematical modelling of induction machines, WNT, Warsaw, (2004), [in Polish].
- [4] L.O. Chua and A. Ushida, „Algorithms for computing almost periodic steady-state response of nonlinear systems to multiple input frequencies”, IEEE Trans. Circuits and Systems, vol. 28, 953‒971, (1981).
- [5] T.J. Sobczyk, “A reinterpretation of the Floquet solution of the ordinary differential equation system with periodic coefficients as a problem of infinite matrix”, Compel, vol.5, 1‒22, (1986).
- [6] S. Yamada, K. Beshho, and J. Lu, “Harmonic balance finite element method application for nonlinear magnetic analysis”, IEEE Trans. Magnetics, vol.25, 2971‒2973, (1989).
- [7] A. Semlyen, E. Acha, and H.W. Dommel, “Newton-type algorithms for the harmonic phasor analysis of nonlinear power circuits in periodical steady state with special reference to magnetic nonlinearities”, IEEE Trans. Power Delivery, vol. 6, 1090‒1098, (1991).
- [8] T.J. Sobczyk, “Direct determination of two-periodic solution for nonlinear dynamic systems”, Compel, Vol.13, 509‒529, (1994).
- [9] J. Rusek, Computer analysis of induction machines by using the harmonic balance method, Univ. of Mining & Metallurgy, Cracow, (2000), [in Polish].
- [10] K. Weinreb, “Diagnostics of an induction-motor rotor by the spectral analysis of stator currents”, Thermal Engineering, vol. 60, 1006‒1023, (2013).
- [11] T. Węgiel, Space harmonic interactions in permanent magnet generators, Pub. Cracow Univ. of Tech., Cracow, (2013).
- [12] M. Radzik, Algorithm for direct determination of stead-states in synchronous machines accounting for the equation of motion, PhD Thesis, Cracow Univ. of Technology, (2011) [in Polish].
- [13] Y. Takahashi, T. Kameari, and T. Tokumasu, “Convergence acceleration in steady state analysis of synchronous machines using time-periodic explicit error correction method”, IEEE Trans. Magnetics, vol. 47/5, 1422‒1425, (2011).
- [14] S. Yamada and K. Bessho, “Harmonic filed calculation by the combination of finite element analysis and harmonic balance method”, IEEE Trans. Magnetics, vol. 24/6, 2588‒2590, (1988).
- [15] S. Yamada, K. Beshho, and J. Lu, “Harmonic balance finite element method application for nonlinear magnetic analysis”, IEEE Trans. Magnetics, vol.25, 2971‒2973, (1989).
- [16] J. Gyselinck, P. Dular, C. Geuzaine, and W. Legros, “Harmonic-balance finite element modeling of electromagnetic devices: a novel approach, IEEE Trans Magnetics., vol. 38/2, 521‒524, (2002).
- [17] O. Deblecker and J. Lobry, “A new efficient technique for harmonic balance-finite element analysis of saturated electromagnetic devices”, IEEE Trans. Magnetics, vol. 38, 535‒538, (2006).
- [18] X. Zhao, J. Lu, L. Li, Z. Cheng, and T. Lu, “Analysis of the DC bias phenomenon by the harmonic balance finite-element method, IEEE Trans. Power Delivery, vol. 26/1, 475‒485, (2011).
- [19] X. Zhao, J. Lu, L. Li, Z. Cheng, and T. Lu, ”Analysis of the saturated electromagnetic devices under CD bias condition by the decomposed harmonic balance method”, COMPEL, vol. 3/2, 498‒513, (2012).
- [20] T. Sobczyk and B. Sapiński, “Harmonic analysis of currents in R,L-systems with semiconductor switching devices”, COMPEL, vol.3, 151‒165, (1983).
- [21] T. Sobczyk and B. Sapiński, “Analysis of phase controlled converters for induction motors”, IEEE Trans. Power Electronics, vol.5, 172‒181, (1990).
- [22] J. Lu, S. Yamada, and H.B. Harrison, “Application of harmonic balance finite element method in the design of switching power supplies”, IEEE Trans. Ind. Electronics, vol. 11/2, 347‒355, (1996).
- [23] L.T.G. Lima, A. Semleyn, and R. Irvani, “Harmonic domain periodic steady state modeling of power electronics apparatus: SVC and TCSC, IEEE Trans, Power Delivery, vol. 18, 960‒967, (2003).
- [24] D. Borkowski, “Matrix converter as power flow controller in transmission line-operatio: analysis in frequency domain”, Monograph No. 428, Cracow University of Technology, (2013).
- [25] R.D. Richtmayer and K.W. Morton, Difference methods for initial-value problems, J Willey & Sons, New York, (1967).
- [26] R.L. Burden and J.D. Faires, Numerical analysis, 3rd ed., PWSKent Pub., Boston, (1985).
- [27] Z. Fortuna, B. Macukow, and J. Wąsowski, Numerical methods, 7th ed., WNT, Warsaw, (2009). [in Polish]
- [28] S. Herdem and M. Koksal, “A fangielskaast algorithm to compute the steady-state solution of nonlinear circuits by piecewise linearization”, Computers and Elec. Eng. vol. 28, 91‒101, (2002).
- [29] A.J. Jordan, “Linearization of non-linear state equation”, Bull. Pol. Ac.: Tech., vol. 54/1, 63‒73, (2006).
- [30] O. Biro and K. Preis, “An efficient time domain method for nonlinear periodic eddy current problems”, IEEE Trans. Magnetics, vol. 42/4, 695‒698, (2006).
- [31] E. Lelarasmee, A.E. Ruchli, and A. Sangiovanni-Vincentelli, “The waveform relaxation method for time-domain analysis of large scale integrated circuits”, IEEE Trans. CADIC, vol. 1/3, 131‒145, (1982).
- [32] G. Caron, T. Henneron, F. Piriou, and J-C Mipo, “Time-periodic condition of nonlinear magnetostatic problem coupled with electric circuit imposed by waveform relaxation method”, IEEE Trans. Magnetics, vol. 52/3, (2016).
- [33] G. Caron, T. Henneron, F. Piriou, and J-C Mipo, “Waveform relaxation-Newton method to determine steady state operation: application to three-phase transformer, COMPEL, vol. 37/3, 729‒740, (2017).
- [34] N. Garcia, „Periodic steady-state solutions of nonlinear circuits based on a differentiation matrix”, Proc. of 2010 IEEE Int.l Symp. Circuits and Systems, 141‒144, (2010).
- [35] T.J. Sobczyk and M. Radzik, “Direct determination of periodic solution in time domain for electromechanical converters, Tech. Trans.–Elec. Eng., Cracow Univ. of Tech., vol. 112/ 2-E, 73‒82, (2015).
- [36] T.J. Sobczyk and M. Radzik, “A new approach to steady state analysis of nonlinear electrical circuits”, COMPEL, Emerald Pub. Ltd., vol.37/3, 716‒728, (2017).
- [37] M. Radzik and T.J. Sobczyk, “An algorithm of time domain steady-state analysis for electrical machines accounting for saturation”, Proc. of Symp. on El. Mach. (SME 2017), IEEE Explore, Paper 13, (2017).
- [38] T.J. Sobczyk, “Algorithm for determining two-periodic steadystates in AC machines directly in time domain”, Arch. of El. Eng., of Polish Academy of Science, vol. 65/3, 575‒583, (2016).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-49e9cba9-4048-47a1-a66d-f0a76689f4c9