PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Równoczesne tłumienie promieniowania gamma i neutronów w jednowarstwowej osłonie betonowej

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Simultaneous attenuation of gamma ray and neutrons in single layer concrete shield
Języki publikacji
PL EN
Abstrakty
PL
Dzięki możliwości zastosowania różnych połączeń, beton jest jednym z najbardziej odpowiednich materiałów do konstruowania osłon przed promieniowaniem. W niniejszych badaniach kruszywo hematytowe i magnetytowe zastąpiło kruszywo zwykłe, oddzielnie i całkowicie w dwóch etapach. Dodatkowo zastępowano 2,5, 5 i 10% masowych cementu węglikiem boru. Przeprowadzono badanie gęstości, tłumienia promieniowania gamma z użyciem źródła Co 60 i promieniowania neutronowego z użyciem Am-Be 241. Zgodnie z wynikami, zastąpienie kruszywa zwykłego kruszywem hematytowym, poprawiło liniowy współczynnik tłumienia i makroskopowy przekrój czynny absorpcji neutronów betonu odpowiednio o 17% i 73%. Właściwości te poprawiły się odpowiednio o 37% i 105%, przy zastosowaniu kruszywa magnetytowego. Ponadto, przy dodaniu do składu betonu maksymalnie 10% węglika boru, makroskopowy przekrój czyny wzrósł o 120%, jednak liniowy współczynnik tłumienia zmniejszył się tylko o 5-8%. Oznacza to, że możliwe jest uzyskanie odpowiedniego tłumienia promieniowania gamma i wiązek neutronów jednocześnie, w jednej warstwie betonowej osłony. Ponadto stwierdzono dobrą zgodność wyników badań i symulacji Monte Carlo.
EN
The ability to create various compounds has made concrete one of the most suitable materials for constructing radiation shields. In this investigation, hematite and magnetite aggregates were used to replace ordinary aggregate, separately and completely in two stages. Boron carbide was also substituting cement at percentages of 2.5, 5, and 10 by mass. The density test, gamma irradiation with Co 60 and neutron irradiation with Am-Be 241 were performed. According to the results, the replacement of ordinary aggregates with hematite aggregates in concrete, improved the linear attenuation coefficient and macroscopic cross section by 17% and 73%, respectively. These parameters increased by 37% and 105%, respectively, by the use of magnetite aggregates. Moreover, with the addition of a maximum of 10% boron carbide to the concrete, the macroscopic cross-section increased by 120%, however, the linear attenuation coefficient decreased by between 5% and 8%. This means that it is possible to have a suitable attenuation of gamma ray and neutron beams in a single layer of concrete shield simultaneously. In addition, the results of the tests and Monte Carlo simulation were found to have good consistency.
Czasopismo
Rocznik
Strony
503--514
Opis fizyczny
Bibliogr. 22 poz., il., tab.
Twórcy
  • Department of Civil Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
  • Department of Civil Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
  • Department of Civil Engineering, Arak University, Arak, Iran
  • Department of Civil Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
Bibliografia
  • 1. M.G. El-Samrah, M.A. Abdel-Rahman, A.M. Kany, Study characteristics of new concrete mixes and their mechanical, physical, and gamma radiation attenuation features, J. Inorg. Gneral Chem. 644, 92-99(2018).https://doi.org/10.1002/zaac.201700420
  • 2. E. Mansouri, A. Mesbahi, R. Malekzadeh, A. Mansouri, Shielding characteristics of nanocomposites for protection against X and gamma rays in medical applications: efect of particle size, photon energy and nanoparticle concentration. Radiat Environ Biophys, 59, 583-600(2020).https://doi.org/10.1007/s00411-020-00865-8
  • 3. M. Kaçal, F. Akman, M. Sayyed, Evaluation of gamma-ray and neutron attenuation properties of some polymers, Nucl. Eng. Tech. 51, 818-824(2019). https://doi.org/10.1016/j.net.2018.11.011
  • 4. M. Kharita, S. Yousef, M. AlNassar, Review on the addition of boron compounds to radiation shielding concrete, Prog. Nucl. Energy. 53, 207-211(2011). https://doi.org/10.1016/j.pnucene.2010.09.012
  • 5. P. Sikora, M. A. Elrahman, E. Horszczaruk, P. Brzozowski, D. Stephan, Incorporation of magnetite powder as a cement additive for improving thermal resistance and gamma-ray shielding properties of cement-based composites. Constr. Build. Mater. 204,113-121 (2019). https://doi.org/10.1016/j.conbuildmat.2019.01.161
  • 6. A. El-Sawy, Development of Nuclear Power Reactor Shielding Using Two Different Types of Heavy Concrete, Arab. J. Nucl. Sci. App. 50(3), 151-158 (2017).
  • 7. B. Oto, A. Gür, E. Kavaz, T. Çakır, N. Yaltay, Determination of gamma and fast neutron shielding parameters of magnetite concretes, Prog. Nucl. Energy 92, 71-80(2016).https://doi.org/10.1016/j.pnucene.2016.06.011
  • 8. B. Oto, A. Gür, Gamma-ray shielding of concretes including magnetite in different rate, Int. J. Phys. Sci.8(8), 310-314(2013). https://doi.org/10.5897/IJPS2013.3854
  • 9. O. Gencel, A. Bozkurt, E. Kam, T. Korkut, Determination and calculation of gamma and neutron shielding characteristics of concretes containing different hematite proportions, Ann. Nucl. Energy 38, 2719-2723(2011).https://doi.org/10.1016/j.anucene.2011.08.010
  • 10. O. Gencel, W. Brostow, C. Ozel, M. Filiz, Concretes containing hematite for use as shielding barriers. Mater. Sci. 16(3), 249-256(2010).
  • 11. K. Saidani, L. Ajam, M.B. Ouezdou, Barite powder as sand substitution in concrete: Effect on some mechanical properties, Constr. Build. Mater. 95, 287-295(2015). https://doi.org/10.1016/j.conbuildmat.2015.07.140
  • 12. S. Shirmardi, M. Shamsaei, M. Naserpour, Comparison of photon attenuation coefficients of various barite concretes and lead by MCNP code, XCOM and experimental data, Ann. Nucl. Energy 55, 288-291(2013). https://doi: 10.1016/j.anucene.2013.01.002
  • 13. I. Akkurt, H. Akyıldırım, B. Mavi, S. Kilincarslan, C. Basyigit, Photon attenuation coefficients of concrete includes barite in different rate. Ann. Nucl. Energy 37(7), 910-914(2010a). https://doi.org/10.1016/j.anucene.2010.04.001
  • 14. I. Akkurt, H. Akyildirim, B. Mavi, S. Kilincarslan, C. Basyigit, Gamma-ray shielding properties of concrete including barite at different energies. Prog. Nucl. Energy 52, 620-623 (2010). https://doi.org/10.1016/j.pnucene.2010.04.006
  • 15. V.A. Kumar, P.A. Kumar, V. Aravinth, L.J. Johnson, Gamma Radiation Absorption Characteristics of Concrete with Boron Carbide and Zeolite. Int. J. Modern Trends Sci. Tech. 3(4), 89-92(2017).
  • 16. I. Akkurt, H. Akyıldırım, B. Mavi, S. Kilincarslan, C. Basyigit, Radiation shielding of concrete containing zeolite. Radiat. Measur. 45(7), 827-830(2010). https://doi.org/10.1016/j.radmeas.2010.04.012
  • 17. B. Oto, N. Yıldız, T. Korkut, E. Kavaz, Neutron shielding qualities and gamma ray buildup factors of concretes containing limonite ore. Nucl. Eng. Design. 293, 166-175(2015). https://doi.org/10.1016/j.nucengdes.2015.07.060
  • 18. M. Glinicki, A. Antolik, M. Gawlicki, Evaluation of compatibility of neutron-shielding boron aggregates with Portland cement in mortar. Constr. Build. Mater. 164, 731-738(2018). https://doi.org/10.1016/j.conbuildmat.2017.12.228
  • 19. D. Sarıyer, R. Küçer, N. Küçer, Neutron shielding properties of concretes containing boron carbide and ferro-boron, Proc. Social. Behavioral. Sci. 195, 1752-1756(2015). https://doi.org/10.1016/j.sbspro.2015.06.320
  • 20. Y. Abdullah, M.R. Yusof, A. Muhamad, Z. Samsu, N. Abdullah, Cement-boron carbide concrete as radiation shielding material. J. Nucl. Rel. Tech. 7(2), 74-79(2010).
  • 21. F.N. Ariffin, Y. Abdullah, R. Shamsudin, R. Hamid, S.H. Ahmad, Effect of Boron Carbide addition on the physical, mechanical and microstructural properties of Portland cement concrete. J. App. Sci. 11(22), 3738-3743(2011).https://doi.org/10.3923/jas.2011.3738.3743
  • 22. M. Safamehr, M. Izadinia, S.H. Hashemi, S. Koohestani, NanoSilica role in concrete containing iron oxides aggregates and boron carbide as a shield against gamma rays. Cem. Wapno Beton 26(3), 218-232(2021).https://doi.org/10.32047/CWB.2021.26.3.4
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-49e8edad-5d80-41b3-93d6-9da87f2c0cf3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.