Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Partitioning sources of ecosystem and soil respiration (Reco and Rs) is important for understanding how climate change affects carbon cycling. Plant and microbial biomass analyses and daytime measurements of Reco and Rs were performed for 25 plots in an alpine meadow at elevation 4313 m on the Tibetan Plateau. Plant and microbial biomass were determined by harvesting method and the chloroform fumigation-extraction method, respectively. Respiration fluxes were measured by an automated CO2 flux system (LI-8100, LI-COR Biosciences, Lincoln, NE, USA). Soil respiration can be estimated by a linear or exponential relationship between Reco and aboveground plant biomass (AGB). Microbial respiration (Rm) can be estimated by a linear or exponential relationship between Rs and belowground plant biomass (BGB) or by a multiple relationship between Reco and AGB and BGB. Soil respiration (or Rm) is respiration flux when AGB (or BGB) is extrapolated to zero for the linear and exponential regression methods. Similarly, Rm is respiration flux when both AGB and BGB are zero for the multiple regression method. Our findings suggest that the exponential regression method to partition sources of Reco and Rs may be more appropriate compared to other methods for this alpine meadow of Tibet.
Czasopismo
Rocznik
Tom
Strony
17--24
Opis fizyczny
Bibliogr. 27 poz., il.
Twórcy
autor
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
autor
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
autor
- Department of Microbiology and Plant Botany, Center for Spatial Analysis, University of Oklahoma, Norman, Oklahoma 73019, USA
autor
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
autor
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
Bibliografia
- 1. Bahn M., Knapp M., Garajova Z., Pfahringer N., Cernusca A. 2006 – Root respiration in temperate mountain grasslands differing in land use – Global Change Biol. 12: 995–1006.
- 2. Bao F., Zhou G.S., Wang F.Y., Sui X.H. 2010 – Partitioning soil respiration in a temperate desert steppe in Inner Mongolia using exponential regression method – Soil Biol. Biochem. 42: 2339–2341.
- 3. Dinakaran J., Mehta N., Krishnayya N.S.R. 2011 – Soil organic carbon dynamics in two functional types of ground cover (grasses and herbaceous) in the tropics – Curr. Sci. 101: 776–783.
- 4. Frank A.B., Liebig M.A., Tanaka D.L. 2006 – Management effects on soil CO2 efflux in northern semiarid grassland and cropland – Soil Till. Res. 89: 78–85.
- 5. Fu G., Shen Z., Xianzhou Z., Shi P., He Y., Wu J., Yuting Z. 2011 – Modeling soil respiration of alpine meadow on the Northern Tibet Plateau using MODIS and climate data (in Chinese with English abstract) – Acta Agrestia Sinica, 19: 400–405.
- 6. Fu G., Shen Z., Zhang X., Shi P., He Y., Zhang Y., Sun W., Wu J., Zhou Y., Pan X. 2012a – Calibration of MODIS-based gross primary production over an alpine meadow on the Tibetan Plateau – Can. J. Remote Sens. 38: 157–168.
- 7. Fu G., Shen Z., Zhang X., Yu C., Zhou Y., LI Y., Yang P. 2013a – Response of ecosystem respiration to experimental warming and clipping at daily time scale in an alpine meadow of Tibet – J. Mt. Sci. 10: 455–463.
- 8. Fu G., Shen Z., Zhang X., Zhou Y. 2012b – Response of soil microbial biomass to short-term experimental warming in alpine meadow on the Tibetan Plateau – Appl. Soil Ecol. 61: 158–160.
- 9. Fu G., Shen Z., Zhang X., Zhou Y., Zhang Y. 2012c – Response of microbial biomass to grazing in an alpine meadow along an elevation gradient on the Tibetan Plateau – Eur. J. Soil Biol. 52: 27–29.
- 10. Fu G., Zhang X., Zhang Y., Shi P., Li Y., Zhou Y., Yang P., Shen Z. 2013b – Experimental warming does not enhance gross primary production and above-ground biomass in the alpine meadow of Tibet – J. Appl. Remote. Sens. 7: 073505–073505.
- 11. Fu G., Zhou Y.T., Shen Z.X., Zhang X.Z., Shi P.L., He Y.T., Wu J.S. 2010 – Relationships between ecosystem respiration and environmental factors of alpine grazing meadows along an altitudinal gradient (4 300~4 700 m) (in Chinese with English abstract) – Ecol. Environ. Sci. 19: 2789–2794.
- 12. Geng Y.B., Luo G.Q. 2011 – Influencing factors and partitioning of respiration in a Leymus chinensis steppe in Xilin River Basin, Inner Mongolia, China – J. Geogr. Sci., 21: 163–175.
- 13. Hu Q.W., Wu Q., Cao G.M., Li D., Long R.J., Wang Y.S. 2008 – Growing season ecosystem respirations and associated component fluxes in two alpine meadows on the Tibetan Plateau – J. Integr. Plant Biol. 50: 271–279.
- 14. Iqbal J., Hu R.G., Feng M.L., Lin S., Malghani S., Ali I.M. 2010 – Microbial biomass, and dissolved organic carbon and nitrogen strongly affect soil respiration in different land uses: A case study at Three Gorges Reservoir Area, South China – Agr. Ecosyst. Environ. 137: 294–307.
- 15. Kucera C.L., Kirkham D.R. 1971 – Soil respiration studies in tallgrass prairie in Missouri – Ecology, 52: 912–915.
- 16. Kuzyakov Y. 2006 – Sources of CO2 efflux from soil and review of partitioning methods – Soil Biol. Biochem. 38: 425–448.
- 17. Li G.Y., Sun S.C. 2011 – Plant clipping may cause overestimation of soil respiration in a Tibetan alpine meadow, southwest China – Ecol. Res. 26: 497–504.
- 18. Oberbauer S.F., Tweedie C.E., Welker J.M., Fahnestock J.T., Henry G.H.R., Webber P.J., Hollister R.D., Walker M.D., Kuchy A., Elmore E., Starr G. 2007 – Tundra CO2 fluxes in response to experimental warming across latitudinal and moisture gradients – Ecol. Monogr. 77: 221– 238.
- 19. Pries C.E.H., Schuur E.A.G., Crummer K.G. 2013 – Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using delta C-13 and Delta C-14 – Global Change Biol. 19: 649–661.
- 20. Shan L., Ronggui H., Minglei F., Jinsong Z., Hatano R. 2010 – Variation of soil respiration from different land uses in subtropical agricultural soils, central China – 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE 2010).
- 21. Shi P.L., Sun X.M., Xu L.L., Zhang X.Z., He Y.T., Zhang D.Q., Yu G.R. 2006 – Net ecosystem CO2 exchange and controlling factors in a steppe – Kobresia meadow on the Tibetan Plateau – Sci. China Ser. D, 49: 207– 218.
- 22. Symonds M.R.E., Moussalli A. 2011 – A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion – Behav. Ecol. Sociobiol. 65: 13–21.
- 23. Vance E.D., Brookes P.C., Jenkinson D.S. 1987 – An extraction method for measuring soil microbial biomass C – Soil Biol. Biochem. 19: 703–707.
- 24. Welker J.M., Fahnestock J.T., Henry G.H.R., O’Dea K.W., Chimner R.A. 2004 – CO2 exchange in three Canadian High Arctic ecosystems: response to long-term experimental warming – Global Change Biol. 10: 1981–1995.
- 25. Wu Z.T., Koch G.W., Dijkstra P., Bowker M.A., Hungate B.A. 2011 – Responses of ecosystem carbon cycling to climate change treatments along an elevation gradient – Ecosystems, 14: 1066–1080.
- 26. Yan L.M., Chen S.P., Huang J.H., Lin G.H. 2011 – Water regulated effects of photosynthetic substrate supply on soil respiration in a semiarid steppe – Global Change Biol. 17: 1990–2001.
- 27. Zhang P., Tang Y., Hirota M., Yamamoto A., Mariko S. 2009 – Use of a regression method to partition sources of ecosystem res¬piration in an alpine meadow – Soil Biol. Biochem. 41: 663–670.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-49e7dbe4-e7ca-4674-b52a-6ea1d843b341