PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The microstructure and thermal properties of Yb2SiO5 coating deposited using APS and PS-PVD methods

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The new ceramic material for Enviromental Barrier Coatings (EBC) on ceramic material was developed. Design/methodology/approach: The ytterbium monosilicate was deposited using two methods: atmospheric plasma spray (APS) and plasma spray physical vapour deposition (PS-PVD). Findings: Obtained coating was characterized by dense structure and columns typically formed in PS-PVD process were not observed. In comparison with APS-deposited coating, in this method, both elements segregation and formation of ytterbium oxide occurred. Research limitations/implications: The further research for production of columnar coatings will be necessary. Practical implications: Developed coatings migh be used for next generations of ceramic materials used for gas turbine and jet engine blades and vanes as a high temperature and corrosion protection. Originality/value: The first time the ytterbium monosilicate was produced bot by APS and LPPS methods.
Słowa kluczowe
Rocznik
Strony
49--57
Opis fizyczny
Bibliogr. 41 poz.
Twórcy
autor
  • Research and Development Laboratory for Aerospace Materials, Rzeszow University of Technology, ul. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
autor
  • Research and Development Laboratory for Aerospace Materials, Rzeszow University of Technology, ul. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
autor
  • Research and Development Laboratory for Aerospace Materials, Rzeszow University of Technology, ul. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
autor
  • Research and Development Laboratory for Aerospace Materials, Rzeszow University of Technology, ul. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
autor
  • Research and Development Laboratory for Aerospace Materials, Rzeszow University of Technology, ul. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
  • Research and Development Laboratory for Aerospace Materials, Rzeszow University of Technology, ul. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
autor
  • Research and Development Laboratory for Aerospace Materials, Rzeszow University of Technology, ul. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
Bibliografia
  • [1] M. Góral, T. Kubaszek, B. Koscielniak, M. Drajewicz, M. Gajewski, Microstructure and oxidation resistance of thermal barrier coatings with different ceramic layer, Solid State Phenomena 320 (2021) 31-36. DOI: https://doi.org/10.4028/www.scientific.net/SSP.320.31
  • [2] M. Góral, J. Sieniawski, S. Kotowski, M. Pytel, M. Masłyk, Influence of turbine blade geometry on thickness of TBCs deposited by VPA and PS-PVD methods, Archives of Materials Science and Engineering 54/1 (2012) 22-28.
  • [3] K.N. Lee, Yb2Si2O7 Environmental barrier coatings with reduced bond coat oxidation rates via chemical modifications for long life, Journal of American Ceramic Society 102/3 (2019) 1507-1521. DOI: https://doi.org/10.1111/jace.15978
  • [4] K.N. Lee, Current status of environmental barrier coatings for Si-based ceramics, Surface and Coatings Technology 133-134 (2000) 1-7. DOI: https://doi.org/10.1016/S0257-8972(00)00889-6
  • [5] D. Tejero-Martin, Ch. Bennett, T. Hussain, A review on environmental barrier coatings: History, current state of the art and future developments, Journal of the European Ceramic Society 41/3 (2021) 1747-1768. DOI: https://doi.org/10.1016/j.jeurceramsoc.2020.10.057
  • [6] S. Arnal, S. Fourcade, F. Mauvy, F. Rebillat, Design of a new yttrium silicate Environmental Barrier Coating (EBC) based on the relationship between micro-structure, transport properties and protection efficiency, Journal of the European Ceramic Society 42/3 (2022) 1061-1076. DOI: https://doi.org/10.1016/j.jeurceramsoc.2021.11.011
  • [7] J. Xiao, Q. Liu, J. Li, H. Guo, H. Xu, Microstructure and high-temperature oxidation behavior of plasma-sprayed Si/Yb2SiO5 environmental barrier coatings, Chinese Journal of Aeronautics 32/8 (2019) 1994- 1999. DOI: https://doi.org/10.1016/j.cja.2018.09.004
  • [8] N. Wu, Y. Wang, R. Liu, H. Liu, R. Liu, A. Li, X. Xiong, Preparation and synthesis mechanism of ytterbium monosilicate nano- T powders by a cocurrent coprecipitation method, Ceramics International 46/10/A (2020) 15003-15012. DOI: https://doi.org/10.1016/j.ceramint.2020.03.030
  • [9] M. Lenz Leite, G. Barroso, M. Parchoviansky, D. Galusek, Emanuel Ionescu, W. Krenkel, G. Motz, Synthesis and characterization of yttrium and ytterbium silicates from their oxides and an oligosilazane by the PDC route for coating applications to protect Si3N4 in hot gas environments, Journal of the European Ceramic Society 37/16 (2017) 5177-5191. DOI: https://doi.org/10.1016/j.jeurceramsoc.2017.04.034
  • [10] P. Chen, P. Xiao, Z. Li, Y. Li, J. Li, Oxidation properties of tri-layer ytterbium-disilicate/mullite/ silicon-carbide environment barrier coatings for Cf/SiC composites, Surface and Coatings Technology 402 (2020) 126329. DOI: https://doi.org/10.1016/j.surfcoat.2020.126329
  • [11] P. Chen, P. Xiao, Z. Li, Y. Li, S. Chen, J. Duan, P. Deng, Thermal cycling behavior of La2Zr2O7/Yb2Si2O7/SiC coated PIP Cf/SiC composites under burner rig tests, Journal of the European Ceramic Society 41/7 (2021) 4058-4066. DOI: https://doi.org/10.1016/j.jeurceramsoc.2021.02.005
  • [12] R.T. Richards, H.N.G. Wadley, Plasma spray deposition of tri-layer environmental barrier coatings, Journal of the European Ceramic Society 34/12 (2014) 3069-3083. DOI: https://doi.org/10.1016/j.jeurceramsoc.2014.04.027
  • [13] E. Yilmaz, P. Xiao, Effects of suspension properties on the fabrication of Yb2Si2O7 coatings using electrophoretic deposition, Journal of the European Ceramic Society 42/2 (2022) 638-648. DOI: https://doi.org/10.1016/j.jeurceramsoc.2021.10.038
  • [14] E. Garcia, O. Sotelo-Mazon, C.A. Poblano-Salas, G. Trapaga, S. Sampath, Characterization of Yb2Si2O7– Yb2SiO5 composite environmental barrier coatings resultant from in situ plasma spray processing, Ceramics International 46/13 (2020) 21328-21335. DOI: https://doi.org/10.1016/j.ceramint.2020.05.228
  • [15] J. Huang, R. Liu, Q. Hu, Y. Wang, X. Guo, X. Lu, M. Xu, Y. Tu, J. Yuan, L. Deng, J. Jiang, S. Dong, L. Liu, M. Chen, X. Cao, Effect of deposition temperature on phase composition, morphology and mechanical properties of plasma-sprayed Yb2Si2O7 coating, Journal of the European Ceramic Society 41/15 (2021) 7902- 7909. DOI: https://doi.org/10.1016/j.jeurceramsoc.2021.08.046
  • [16] D. Chen, R. Harmon, G. Dwivedi, Ch. Dambra, M. Dorfman, In-flight particle states and coating properties of air plasma sprayed ytterbium disilicates, Surface and Coatings Technology 417 (2021) 127186. DOI: https://doi.org/10.1016/j.surfcoat.2021.127186
  • [17] F. Feng, B. Jang, J.Y. Park, K.S. Lee, Effect of Yb2SiO5 addition on the physical and mechanical properties of sintered mullite ceramic as an environmental barrier coating material, Ceramics International 42/14 (2016) 15203-15208. DOI: https://doi.org/10.1016/j.ceramint.2016.06.149
  • [18] G.W. Lee, T.W. Kim, W.G. Sloof, K.S. Lee, Self-healing capacity of Mullite-Yb2SiO5 environmental barrier coating material with embedded Ti2AlC MAX phase particles, Ceramics International 47/16 (2021) 22478-22486. DOI: https://doi.org/10.1016/j.ceramint.2021.04.257
  • [19] W. Kunz, H. Klemm, A. Michaelis, Crack-healing in ytterbium silicate filled with silicon carbide particles, Journal of the European Ceramic Society 40/15 (2020) 5740-5748. DOI: https://doi.org/10.1016/j.jeurceramsoc.2020.06.032
  • [20] F. Mao, Y. Niu, X. Zhong, Y. Wang, X. Zhu, L. Zhang, Q. Li, X. Zheng, Oxidation behaviors and mechanisms of Yb2O3-doped silicon coatings fabricated by vacuum plasma spray, Ceramics International 47/14 (2021) 19906-19913. DOI: https://doi.org/10.1016/j.ceramint.2021.04.005
  • [21] G.C.C. Costa, N.S. Jacobson, Mass spectrometric measurements of the silica activity in the Yb2O3-SiO2 system and implications to assess the degradation of silicate-based coatings in combustion environments, Journal of the European Ceramic Society 35/15 (2015) 4259-4267. DOI: https://doi.org/10.1016/j.jeurceramsoc.2015.07.019
  • [22] B. Jang, N. Nagashima, S. Kim, Y. Oh, S. Lee, H. Kim, Mechanical properties and microstructure of Yb2SiO5 environmental barrier T coatings under isothermal heat treatment, Journal of the European Ceramic Society 40/7 (2020) 2667-2673. DOI: https://doi.org/10.1016/j.jeurceramsoc.2019.12.057
  • [23] B.T. Richards, S. Sehr, F. de Franqueville, M.R. Begley, H.N.G. Wadley, Fracture mechanisms of ytterbium monosilicate environmental barrier coatings during cyclic thermal exposure, Acta Materialia 103 (2016) 448-460. DOI: https://doi.org/10.1016/j.actamat.2015.10.019
  • [24] Y. Zhang, B. Zou, Y. Wang, P. Huang, G. Yu, Z. Gu, Hot corrosion behavior of Yb2SiO5 coating in NaVO3 molten salt, Corrosion Science 193 (2021) 109883. DOI: https://doi.org/10.1016/j.corsci.2021.109883
  • [25] V.L. Wiesner, D. Scales, N.S. Johnson, B.J. Harder, A. Garg, N.P. Bansal, Calcium–magnesium alumino-silicate (CMAS) interactions with ytterbium silicate environmental barrier coating material at elevated temperatures, Ceramics International 46/10/B (2020) 16733-16742. DOI: https://doi.org/10.1016/j.ceramint.2020.03.249
  • [26] A.A. Nieai, M. Mohammadi, M. Shojaie-Bahaabad, Hot corrosion behavior of calcium magnesium aluminosilicate (CMAS) on the Yb2SiO5-8YSZ composite as a candidate for environmental barrier coatings, Materials Chemistry and Physics 243 (2020) 122596. DOI: https://doi.org/10.1016/j.matchemphys.2019.122596
  • [27] D. Tejero-Martin, A.R. Romero, R.G. Wellman, T. Hussain, Interaction of CMAS on thermal sprayed ytterbium disilicate environmental barrier coatings: A story of porosity, Ceramics International 48/6 (2022) 8286-8296. DOI: https://doi.org/10.1016/j.ceramint.2021.12.033
  • [28] X. Chen, Y. Li, W. Zhou, P. Xiao, P. Chen, Y. Tong, M. Chen, Interaction of Yb2Si2O7 environmental barrier coating material with Calcium-Ferrum- Alumina-Silicate (CFAS) at high temperature, Ceramics International 47/22 (2021) 31625-31637. DOI: https://doi.org/10.1016/j.ceramint.2021.08.043
  • [29] W.D. Summers, M.R. Begley, F.W. Zok, Transition from penetration cracking to spallation in environmental barrier coatings on ceramic composites, Surface and Coatings Technology 378 (2019) 125083. DOI: https://doi.org/10.1016/j.surfcoat.2019.125083
  • [30] R. Kassem, N. Al Nasiri, A comprehensive study on the mechanical properties of Yb2SiO5 as a potential environmental barrier coating, Surface and Coatings Technology 426 (2021) 127783. DOI: https://doi.org/10.1016/j.surfcoat.2021.127783
  • [31] Y. Wang, Y. Niu, X. Zhong, M. Shi, F. Mao, L. Zhang, Q. Li, X. Zheng, Water vapor corrosion behaviors of plasma sprayed ytterbium silicate coatings, Ceramics International 46/18/A (2020) 28237-28243. DOI: https://doi.org/10.1016/j.ceramint.2020.07.324
  • [32] N. Rohbeck, P. Morrell, P. Xiao, Degradation of ytterbium disilicate environmental barrier coatings in high temperature steam atmosphere, Journal of the European Ceramic Society 39/10 (2019) 3153-3163. DOI: https://doi.org/10.1016/j.jeurceramsoc.2019.04.034
  • [33] M. Ridley, E. Opila, Thermochemical stability and microstructural evolution of Yb2Si2O7 in high-velocity high-temperature water vapor, Journal of the European Ceramic Society 41/5 (2021) 3141-3149. DOI: https://doi.org/10.1016/j.jeurceramsoc.2020.05.071
  • [34] N. Al Nasiri, N. Patra, M. Pezoldt, J. Colas, W.E. Lee, Investigation of a single-layer EBC deposited on SiC/SiC CMCs: Processing and corrosion behaviour in high-temperature steam, Journal of the European Ceramic Society 39/8 (2019) 2703-2711. DOI: https://doi.org/10.1016/j.jeurceramsoc.2018.12.019
  • [35] M.J. Presby, B.J. Harder, Solid particle erosion of a plasma spray – physical vapor deposition environmental barrier coating in a combustion environment, Ceramics International 47/17 (2021) 24403-24411. DOI: https://doi.org/10.1016/j.ceramint.2021.05.154
  • [36] T. Kubaszek, M. Góral, Influence of air plasma spraying process parameters on ceramic layer in thermal barrier coatings, Solid State Phenomena 267 (2017) 207-211. DOI: https://doi.org/10.4028/www.scientific.net/SSP.267.20 7
  • [37] M. Góral, R. Swadźba, T. Kubaszek, TEM investigations of TGO formation during cyclic oxidation in two- and three-layered Thermal Barrier Coatings produced using LPPS, CVD and PS-PVD methods, Surface and Coatings Technology 394 (2020) 125875. DOI: https://doi.org/10.1016/j.surfcoat.2020.125875
  • [38] M. Góral, M. Pytel, P. Sosnowy, S. Kotowski, M. Drajewicz, Microstructural characterization of thermal barrier coatings deposited by APS and LPPS thin film methods, Solid State Phenomena 197 (2013) 1-5. DOI: https://doi.org/10.4028/www.scientific.net/SSP.197.1
  • [39] E. Garcia, H. Garces, L. Turcer, H. Bale, N. Padture, S. Sampath, Crystallization behavior of air-plasma-sprayed ytterbium-silicate-based environmental barrier coatings, Journal of the European Ceramic Society 41/6 (2021) 3696-3705. DOI: https://doi.org/10.1016/j.jeurceramsoc.2020.12.051
  • [40] X. Zhang, C. Wang, R. Ye, C. Deng, X. Liang, Z. Deng, S. Niu, J. Song, G. Liu, M. Liu, K. Zhou, J. Lu, J. Feng, Mechanism of vertical crack formation in Yb2SiO5 coatings deposited via plasma spray-physical vapor deposition, Journal of Materiomics 6/1 (2020) 102-108. DOI: https://doi.org/10.1016/j.jmat.2020.01.002
  • [41] C. Wang, M. Liu, J. Feng, X. Zhang, C. Deng, K. Zhou, D. Zeng, C. Guo, R. Zhao, S. Li, Corrosion Behavior of Yb2SiO5 Environmental Barrier Coatings Prepared by Plasma Spray-Physical Vapor Deposition, Coatings 10/4 (2020) 392. DOI: https://doi.org/10.3390/coatings10040392
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-49e5f590-4ff8-4037-b56a-4d7dc560eccb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.