PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Concept of the hexa-quad bimorph walking robot and the design of its prototype

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Present-day walking robots can increasingly successfully execute locomotive as well as manipulative functions, which leads to their expansion into more and more applications. This article presents the design of a hexa-quad bimorph walking robot with the ability to move at a relatively high speed in difficult terrain. It also has manipulation capabilities both at a standstill and in motion. This feature of the robot is made possible by the ability to easily change the configuration from six-legged to four-legged by elevating the front segment of its body. Presented prototype will be used in further research to develop the hexa-quad bimorph walking robot.
Słowa kluczowe
Rocznik
Strony
60--65
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
  • Chair of Basics of Machine Design, Faculty of Machines and Transport, Poznan University of Technology, ul. Piotrowo 3, 60-965 Poznań, Poland
autor
  • Chair of Basics of Machine Design, Faculty of Machines and Transport, Poznan University of Technology, ul. Piotrowo 3, 60-965 Poznań, Poland
autor
  • Chair of Basics of Machine Design, Faculty of Machines and Transport, Poznan University of Technology, ul. Piotrowo 3, 60-965 Poznań, Poland
Bibliografia
  • 1. Bartsch S. (2012), Development, control, and empirical evaluation of the six-legged robot SpaceClimber designed for extraterrestrial crater exploration, dissertation, Bremen, University of Bremen.
  • 2. Boston Dynamics website https://www.bostondynamics.com/robots [Access date: 26.10.2017].
  • 3. Garcia E., Estremera J., Gonzalez-de-Santos P. (2002) A comparative study of stability margins for walking machines. Robotica, 20, 595-606.
  • 4. Garcia E., Estremera J., Gonzalez-de-Santos P. (2002), A classification of stability margins for walking robots, Proceedings of CLAWAR, Paris, France.
  • 5. Hajiabadi M.M.A. (2013), Analytical workspace, kinematics, and foot force based stability of hexapod walking robots, dissertation, Worcester: Worcester Polytechnic Institute.
  • 6. Hirsoe S., Tsukagoshi H., Yoneda K. (2001), Normalized energy stability margin and its contour of walking vehicles on rough terrain, International Conference on Robotics & Automation, Seoul Korea.
  • 7. Hung M-H., Cheng F-T., Lee H-L. (2005), Orin DE. Increasing the stability margin of multilegged vehicles through body sway. J Chin. Inst. Eng, 28, 39-54.
  • 8. Inagaki K. (1998), A gait study for one-leg-disabled hexapod robot, Advanced Robotics, 12, 593-604.
  • 9. Kim J-Y., Jun B-H. (2014), Design of six-legged walking robot, Little Crabster for underwater walking and operation, Advanced Robotics, 28, 77-89.
  • 10. Kolouche S., Rollinson D., Choset H. (2015), Modularity for maximum mobility and manipulation: control of a reconfigurable legged robot with series-elastic actuators, Proceedings of the IEEE International Symposium on Safety, Security and Robotics (SSRR), 1-8.
  • 11. Lewinger W.A, Branicky M.S., Quinn R.D. (2005), Insect-inspired, actively compliant hexapod capable of object manipulation, Proceedings of CLAWAR, Londom, 65-72.
  • 12. Manz M., Bartsch S., Kirchner F. (2013), MANTIS - a robot with advanced locomotion and manipulation abilities, Proceedings of Symposium on Advanced Space Technologies in Robotics and Automation, Noordwijk the Netherlands.
  • 13. Morecki A., Knapczyk.J. (1999), Basics of Robotics – theory and elements of manipulators and robots (in polish), Warszawa.
  • 14. Roennau A., Heppner G., Nowicki M., Dillmann R. (2014), LAURON V: A versatile six-legged walking robot with Advanced Maneuverability, IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Besançon, France, 82-87.
  • 15. Saunders A., Goldman D.I., Full R.J., Buehler M. (2006), The RiSE climbing robot: body and leg design, Proceedings of The International Society of Optical Engineering, Orlando USA, 6230, 623017.
  • 16. Tang Y., Ma S., Sun Y., Ge D. (2015), Planar legged walking of passive-spine hexapod robot, Advanced Robotics, 29, 1510-1525.
  • 17. Todd D.J. (1985), Walking machines - An introduction to legged robots, Springer, London.
  • 18. Wojtkowiak D., Malujda I., Talaśka K., Magdziak Ł., Wieczorek B. (2017), Influence of the Body Weight Distribution on the Walking Robot's Gait Stability, Proceedia Engineering, 177, 419-424.
  • 19. Wojtkowiak D., Talaśka K., Malujda I. (2016), Computer analysis of insect-like robot leg structure – part 1 – Static Finite-Element analysis, Journal of Mechanical and Transport Engineering, 68(3), 53-62.
  • 20. Wojtkowiak D., Talaśka K., Malujda I. (2016), Computer analysis of insect-like robot leg structure – part 2 – kinematic and dynamic analyses, Journal of Mechanical and Transport Engineering, 68(3), 63-75.
  • 21. Wojtkowiak D., Talaśka K., Malujda I. (2017), The selection of the bimorph walking robot drives based on the dynamic model of its legs (in polish), Inżynieria wytwarzania, Wyd. uczelniane Państwowej Wyższej Szkoły Zawodowej w Kaliszu, in press.
  • 22. Zielińska T. (2014), Walking robots – basics, design, steering and biological patterns, PWN, Warszawa.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-49e53395-509b-48f7-9c42-49c373487eee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.