PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Developmet the complex technology for highly concentrated acid solutions of electroplating industry

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of research on the application of ion-exchange processes for the extraction of iron (II) and copper (II) ions from liquid acid wastes of electroplating production. In the course of experimental studies, it was shown that with an increase in the concentration of sulfuric acid, the total exchangeable dynamic capacity (TEDC) of the cationite significantly decreases both during the sorption of iron ions and during the sorption of copper ions. At the same time, an increase in the iron (II) ions concentration leads to a significant increase in TEDC - even with a sulfuric acid concentration of 8-13 g/dm3, TEDC reached the level of 1.35 g-eq/dm3, which corresponds to the sorption level of neutral dilute solutions. However, it can be seen from the total concentration that the efficiency of sorption of metals from acidic solutions remains quite high and increases with the increase of the initial total content of sorbed ions. The main indicator used when choosing an ion exchange method is the possibility of effective regeneration of the cation exchange material. When using a 5% solution of sulfuric acid already at the specific consumption of the regeneration solution, it was possible to achieve a degree of regeneration at the level of 95-98%, and when using a 10% solution, the degree of regeneration reached 100%. According to the research results, a technological scheme for processing regeneration solutions by precipitation of metals from regeneration solutions into magnetites in a ferritizer reactor was proposed.
Rocznik
Strony
83--90
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
  • Dr. Hab. Eng.; Department of Ecology and Technology of Plant Polymers National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 37, Prospect Beresteiskyi, Kyiv, 03056, Ukraine
  • PhD; Department of Ecology and Technology of Plant Polymers National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 37 Prospect Beresteiskyi, Kyiv, 03056, Ukraine
  • Dr. Eng.; Department of Ecology and Technology of Plant Polymers National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 37 Prospect Beresteiskyi, Kyiv, 03056, Ukraine
  • Dr. Eng.; Automation Hardware and Software Department National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 37 Prospect Beresteiskyi, Kyiv, 03056, Ukraine
  • Department of Heat-Physical Problems of Heat Supply Systems, Institute of Engineering Thermophysics of National Academy of Sciences, 2a, Marii Kapnist (Zhelyabova) Str., Kyiv, 03057, Ukraine
  • Dr. Eng.; Department of Heat-Physical Problems of Heat Supply Systems Institute of Engineering Thermophysics of National Academy of Sciences, 2a, Marii Kapnist (Zhelyabova) Str., Kyiv, 03057, Ukraine
  • Dr. Eng.; Automation Hardware and Software Department National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 37 Prospect Beresteiskyi, Kiev, 03056, Ukraine
Bibliografia
  • [1] Radovenchyk, V. M., Ivanenko, O. I., Radovenchyk, Ya. V. and Krysenko, T. V. (2020). Zastosuvannya ferytnykh materialiv v protsesakh ochyshchennya vody: monohrafiya, Bila Tserkva: Vydavnytstvo O. V. Pshonkivskyy, 215. https://eco-paper.kpi.ua/CONTENT/literatyra/ferity_mono.pdf
  • [2] Council Directive 96/61/EC of 24 September 1996 concerning Integrated Pollution Prevention and Control (IPPC), Official Journal L 257. https://www.eea.europa.eu/policy-documents/ council-directive-96-61-ec-ippc
  • [3] Yatskov, M., Korchyk, N. and Prorok, O. (2019). Developing a technology for processing cuprum containing wastes from galvanic production aimed at their further use, Eastern-European Journal of Enterprise Technologies, 6/10(102), 32-41. https://doi.org/10.15587/1729-4061.2019.186620
  • [4] Donchenko, M. I., Frolenkova, S. V. and Motronyuk, T. I. (2018). Ekolohichna bezpeka halvanotekhniky. Stichni vody. Mekhanichna ta sorbtsiyna ochystka: pidruchnyk, Kyiv: KPI im. Ihorya Sikorskoho, 202. https://ela.kpi.ua/bitstream/123456789/24936/3/Ekolo gichna_bezpeka_galvanotekhniky.doc
  • [5] Sakalova, G. V. and Vasylinych, T. M. (2019). Doslidzhennya efektyvnosti ochyshchennya stichnykh vod vid ioniv vazhkykh metaliv z vykorystannyam pry- rodnykh adsorbentiv: monohrafiya, Vinnytsya: TOV «Tvory», 92.
  • [6] Gomelya, M. D., Overchenko, T. A. and Ivanenko, O. I. (2020). Bilsh chysti vyrobnytstva: pidruchnyk, Bila Tserkva: Vydavnytstvo O. V. Pshonkivskyy, 248.
  • [7] Jamrack, W. D. (1963). Rare Metal Extraction by Chemical Engineering Techniques: International Series of Monographs on Chemical Engineering, Oxford: Pergamon Press, 360. https://www.sciencedirect.com/book/9780080098685/r are-metal-extraction-by-chemical-engineering-tech- niques
  • [8] Bashir, A., Malik, L.A., Ahad, S., Manzoor, T., Bhat, M.A., Dar, G. N. and Pandith, A.H. (2019). Removal of heavy metal ions from aqueous system by ionexchange and biosorption methods, Environmental Chemistry Letters, 17, 729-754.
  • [9] Qasem, N.A.A., Mohammed, R.H. and Lawal, D.U. (2021). Removal of heavy metal ions from wastewater: a comprehensive and critical review, npj Clean Water, 4(36), 1-15.
  • [10] Nosachova, Yu. V, Makarenko, I. M. and Ivanenko, O. I. (2014). Vplyv ioniv tverdosti na efektyvnist ochystky vody vid ioniv midi, Bulletin of National Technical University of Ukraine “Kyiv Polytechnic Institute”, Series: Chemical engineering, ecology and resource saving, 1 (12), 54-60.
  • [11] Ivanenko, O. I., Nosachova, Yu. V., Overchenko, T. A. and Nakonechna, M. V (2020). Osoblyvosti zastosuvannya katalizatoriv riznykh typiv v protsesakh zneshkodzhennya monooksydu vuhletsyu dymovykh haziv, Bulletin of National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Series: Chemical engineering, ecology and resource saving, 1(19), 22-42. http://chemengine.kpi.ua/article/view/207808
  • [12] Kochetov, G., Samchenko, D., Kolodko, A., Kovalchuk, O., and Pasko, A. (2018). Development of technology of industrial wastes treatment products disposal by ferritization in the matrix of alkali-activated cements, Technology Audit and Production Reserves, 6/3(44), 31-35. https://doi.org/10.15587/2312-8372.2018.152615
  • [13] Nabyvanets, B. Y., Osadchyy, V. I., Osadcha, N. M., and Nabyvanets, Yu. B., (2007). Analitychna khimiya poverkhnevykh vod: monohrafiya, Kyiv: Naukova dumka, 456.
  • https://www.nas.gov.ua/UA/Book/Pages/default.aspx? BookID=0000002073
  • [14] Ivanenko, O., Radovenchyk, V., Overchenko, T., and Radovenchyk, L. (2020). Integrated use of magnetite in environmental protection measures, ScienceRise, 5, 57-65. http://doi.org/10.21303/2313-8416.2020.001462
  • [15] Honcharuk, V. V., Radovenchyk, V. M., and Homelya, M. D. (2003). ykh sorbentiv z mahnitnymy vlastyvostyamy: monohrafiya. Kyiv: Hrafika, 264.
  • [16] Ivanenko, O., Radovenchyk, V. and Radovenchyk, I. (2020). Neutralization of carbon monoxide by magnetite-based catalysts, Technology audit and production reserves, 5/3(55), 24-28.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-49dedf03-4f02-4cae-8c3f-1c64af889f10
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.