Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
First principles based numerical methods are used to determine the phase stability diagram of the Ir–Pt solid solution with A1-type crystal structure. Ising-like cluster expansion formalism was used to construct the lattice Hamiltonian. Phase diagram was calculated with the use of Monte Carlo simulations. Miscibility gap in this system was predicted. Calculated consolute temperature (TC) is about 1250 K at 50% of platinum when excess vibrational contribution to the free energy was included. The result is in good quantitative agreement with experimental data.
Rocznik
Tom
Strony
265--269
Opis fizyczny
Bibliogr. 26 poz., wykr.
Twórcy
autor
- Institute of Materials Science, University of Silesia, ul. 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland.
autor
- Institute of Materials Science, University of Silesia, ul. 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland.
Bibliografia
- [1] ADJAOUD O., STEINLE-NEUMANN G., BURTON B.P., VAN DE WALLE A., First-principles phase diagram calculations for the HfC-TiC, ZrC-TiC and HfC-ZrC solid solutions, Phys. Rev. B, 2009, Vol. 80, pp. 134112.
- [2] BEDFORD R.E., BONNIER G., MAAS H., PAVESE F., Recommended values of temperature on the International Temperature Scale of 1990 for a selected set of secondary reference points, Metrologia, 1996, Vol. 33 (2), pp. 133.
- [3] BHARDAWAJ S.R., TRIPATHI S.N., The Ir-Pt (Iridium-Platinum) System, J. Phase Equil., 1995, Vol. 16, pp. 460.
- [4] BlÖCHL P.E., Projector augmented-wave method, Phys. Rev. Lett. B, 1994, Vol. 50, pp. 17953.
- [5] Burton B.P., van de Walle A., First principles phase diagram calculations for the system NaCl-KCl: The role of excess vibrational entropy, Chemical Geology, 2006, Vol. 225, pp. 222.
- [6] BURTON B.P., VAN DE WALLE A., KATTNER U., First principles phase diagram calculations for the wurtzite structure systems AlN-GaN, GaN-InN, and AlN-InN, J. Appl. Phys., 2006, Vol. 100, pp. 113528.
- [7] COWLEY A., WOODWAR B., A Healthy Future: Platinum in Medical Applications. Platinum group metals enhance the quality of life of the global population, Platinum Metals Rev., 2011, Vol. 55, pp. 98.
- [8] FRANKE P., NEUSCHUTZ D., Ir-Pt (Iridium – Platinum), Binary Systems. Part 5: Binary Systems Supplement 1, Landolt-Bornstein – Group IV Physical Chemistry, 2007, Vol. 19B5, pp. 1.
- [9] GARBULSKY G.D., CEDER G., Contribution of the vibrational free energy to phase stability in substitutional alloys: Methods and trends, Phys. Rev. B, 1996, Vol. 53, pp. 8993.
- [10] KRESSE G., HAFNER J., Ab initio molecular dynamics for liquid metals, Phys. Rev. B, 1993, Vol. 47, pp. 558-561.
- [11] KRESSE G., HAFNER J., Ab initio molecular simulation of the liquid-metal–amorphous-semiconductor transition in germanium, Phys. Rev. B, 1993, Vol. 49, pp. 14251.
- [12] KRESSE G., FURTHMÜLLER J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mat. Science, 1996, Vol. 6, pp. 15.
- [13] KRESSE G., FURTHMÜLLER J., Efficient iterative schemes for ab initio total-energy calculations using a planewave basis set, Phys. Rev. Lett., 1996, Vol. 54, pp. 11169.
- [14] MASING G., ECKHARDE K., KLOIBER K., Z. METALKD., 1940, Vol. 32, pp. 122.
- [15] MERKER J., LUPTON D., TOPFER M., KNAKE H., High Temperature Mechanical Properties of the Platinum Group Metals, Elastic Properties of Platinum, Rhodium and Iridium and Their Alloys at High Temperatures, Platinum Metals Reviev, 2001, Vol. 45, pp. 74.
- [16] RAUB E., Metals and alloys of the platinum group, J. Less Common Met., 1959, Vol. 1, pp. 3.
- [17] SANCHEZ J.M., DUCASTELLE F., GRATIAS D., Generalized cluster description of multicomponent systems, Physica A, 1984, Vol. 128, pp. 334.
- [18] VAITHINATHAN K., LANAM R., Features and Benefits of Different Platinum Alloys, Technical Articles: Alloys, Platinum Guild International, USA, 2005: http://www.platinumguild.com/output/page2414.asp.
- [19] VAN DE WALLE A., CEDER G., Automating first principles phase diagram calculations, J. Phase Equil., 2002, Vol. 23, pp. 348.
- [20] VAN DE WALLE A., ASTA M., CEDER G., The alloy theoretic automated toolkit: A user guide, Calphad, 2002, Vol. 26, pp. 539.
- [21] VAN DE WALLE A., ASTA M., Self-driven lattice-model Monte Carlo simulations of alloy thermodynamic, Modelling Simul. Mater. Sci. Eng., 2002, Vol 10, pp. 521.
- [22] VAN DE WALLE A., CEDER G., The effect of lattice vibrations on substitutional alloy thermodynamics, Rev. Mod. Phys., 2002, Vol. 74, pp. 11.
- [23] VAN DE WALLE A., CEDER G., Automating first principles phase diagram calculations, J. Phase Equil., 2002, Vol. 23, pp. 348.
- [24] WOŹNIAKOWSKI A., DENISZCZYK J., ADJAOUD O., BURTON B.P., First principles phase diagram calculations for the CdSe-CdS wurtzite, zincblende and rock salt structures, Comp. Meth. Mater. Sci., 2013, Vol. 13, pp. 345.
- [25] WOŹNIAKOWSKI A., DENISZCZYK J., Phase diagram calculations for the ZnSe – BeSe system by first-principles based thermodynamic Monte Carlo integration, Comp. Meth. Mater. Sci., 2013, Vol. 13, pp. 351.
- [26] YAMABE-MITARAI Y., AOYAGI T., ABE T., An investigation of phase separation in the Ir-Pt binary system, J. Alloys Comp., 2009, Vol. 484, pp. 327.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-49dc2037-7326-44e3-a24e-81ce8619c74e