PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Model research of gas emissions from lignite and biomass co-combustion in a large scale CFB boiler

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper is focused on the idea of a combustion modelling of a large-scale circulating fluidised bed boiler (CFB) during coal and biomass co-combustion. Numerical computation results for three solid biomass fuels co-combustion with lignite are presented in the paper. The results of the calculation showed that in previously established kinetics equations for coal combustion, some reactions had to be modified as the combustion conditions changed with the fuel blend composition. Obtained CO2, CO, SO2 and NOx emissions are located in borders of ± 20% in the relationship to the experimental data. Experimental data was obtained for forest biomass, sunflower husk, willow and lignite cocombustion tests carried out on the atmospheric 261 MWe COMPACT CFB boiler operated in PGE Turow Power Station in Poland. The energy fraction of biomass in fuel blend was: 7%wt, 10%wt and 15%wt. The measured emissions of CO, SO2 and NOx (i.e. NO + NO2) were also shown in the paper. For all types of biomass added to the fuel blends the emission of the gaseous pollutants was lower than that for coal combustion.
Rocznik
Strony
217--231
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
  • Czestochowa University of Technology, Institute of Advanced Energy Technologies, Dąbrowskiego 73, 42-201 Czestochowa, Poland
autor
  • Czestochowa University of Technology, Institute of Advanced Energy Technologies, Dąbrowskiego 73, 42-201 Czestochowa, Poland
autor
  • AGH University of Science and Technology, Krakow, Poland
Bibliografia
  • 1. Abelha P., Gulyurtlu I., Crujeira T., Cabrita I., 2008. Co-combustion of several biomass materials with bituminous coal in a circulating fluidized bed combustor. 9th International Conference on Circulating Fluidized Beds in conjunction with the 4th International VGB Workshop Operating Experience with Fluidized Bed Firing Systems, Hamburg, Germany, 2008.
  • 2. Armesto L., Bahillo A., Veijonen K., Cabanillas A., Otero J., 2002. Combustion behaviour of rice husk in a bubbling fluidised bed. Biomass Bioenerg., 23, 171–179. DOI: 10.1016/S0961-9534(02)00046-6.
  • 3. Armesto L., Bahillo A., Cabanillas A., Veijonen K., Otero J., Plumed A., Salvador L., 2003. Co-combustion of coal and olive oil industry residues in fluidised bed. Fuel, 82, 993–1000. DOI:10.1016/S0016-2361(02)00397-6.
  • 4. Bahillo A., Cabanillas A., Gayan P., Diego L.D., Adanez J., 2003. Co-combustion of coal and biomass in FB boilers: model validation with experimental results from CFB pilot plant. 46th Int. Energy Agency – Fluidized Bed Conversion (IEA – FBC), Jacksonville, FL, USA, 2003.
  • 5. Chen Z., Mu Lin, Ignowski J., Kelly B., Linjewile T.M., Agarwal P.K., 2001. Mathematical modelling of fluidized bed combustion. 4: N2O and NOx emissions from the combustion of char. Fuel, 80, 1259–1272. DOI: 10.1016/S0016-2361(01)00007-2.
  • 6. Desroches-Ducarne E., Dolignier J. C., Marty E., Martin G., Delfosse L., 1998. Modelling of gaseous pollutants emissions in circulating fluidized bed combustion of municipal refuse. Fuel, 77, 1399–1410. DOI: 10.1016/S0016-2361(98)00060-X.
  • 7. Furusawa T., Tsunoda M., Kunii D., 1982. Nitric oxide reduction by hydrogen and carbon monoxide over char surface. Fundamental kinetics for nitric oxide emission control from fluidized-bed combustor of coal, In: Wei J., Georgakis Ch. (Eds.), Chemical Reaction Engineering – Boston. ACS Symposium Series, 196, Chapter 29, 347–357. DOI: 10.1021/bk-1982-0196.ch029.
  • 8. Furusawa T., Tsujimura M., Yasunaga K., Kojima T., 1985. Fate of fuel bond nitrogen within fluidized-bed combustor under staged air firing, 8th International Conference on Fluidized-Bed Combustion, Houston, TX, USA, 1985.
  • 9. Gayan P., Adanez J., Diego L.F., Garcia-Labiano F., Cabanillas A., Bahillo A., Aho M., Veijonen K., 2004. Circulating fluidised bed co-combustion of coal and biomass. Fuel, 83, 277–286. DOI: 10.1016/j.fuel.2003.08.003.
  • 10. Gungor A., Eskin N., 2008. Two-dimensional coal combustion modelling of CFB. Int. J. Therm. Sci., 47, 157–174. DOI: 10.1016/j.ijthermalsci.2007.01.017.
  • 11. Hayhurst A.N., Lawrence A.D., 1996. The amounts of NOx and N2O formed ina fluidized bed combustor during the burning of coal volatiles and also of char. Combust. Flame, 105, 341–357. DOI: 10.1016/0010-2180(95)00215-4.
  • 12. Hein K.R.G., Bemtgen J.M., 1998. EU clean coal technology—co-combustion of coal and biomass. Fuel Process.Technol., 54, 159–169. DOI: 10.1016/S0378-3820(97)00067-2.
  • 13. Hupa M., 2005. Interaction of fuels in co-firing in FBC. Fuel 84, 1312–1319. DOI: 10.1016/j.fuel.2004.07.018.
  • 14. Huilin L., Guangbo Z., Rushan B., Yongjin C., Gidaspow D., 2000. A coal combustion model for circulating fluidized bed boilers. Fuel, 79, 165–172. DOI: 10.1016/S0016-2361(99)00139-8.
  • 15. Jenkins B.M., Baxter L.L., Miles Jr. T.R., Miles T.R., 1998. Combustion properties of biomass. Fuel Process. Technol., 54, 1–3. DOI: 10.1016/S0378-3820(97)00059-3.
  • 16. Knobig T., Werther J., Amand L.-E., Leckner B., 1998. Comparison of large- and small-scale circulating fluidized bed combustors with respect to pollutant formation and reduction for different fuels. Fuel, 77, 1635– 1642. DOI: 10.1016/S0016-2361(98)00092-1.
  • 17. Krzywański J., Czakiert T., Muskala W., Sekret R., Nowak W., 2010a. Modelling of solid fuels combustion in oxygen-enriched atmosphere in circulating fluidized bed boiler. Part 1. The mathematical model of fuel combustion in oxygen-enriched CFB environment. Fuel Process. Technol., 91, 290–295. DOI: 10.1016/j.fuproc.2009.10.011.
  • 18. Krzywański J., Czakiert T., Muskala W., Sekret R., Nowak W., 2010b. Modelling of solid fuel combustion in oxygen-enriched atmosphere in circulating fluidized bed boiler. Part 2. Numerical simulations of heat transfer and gaseous pollutant emissions associated with coal combustion in O2/CO2 and O2/N2 atmospheres enriched with oxygen under circulating fluidized bed conditions. Fuel Process. Technol., 91, 364–368. DOI: 10.1016/j.fuproc.2009.11.008.
  • 19. Krzywański J., Czakiert T., Muskała W., Nowak W., 2011. Modelling of CO2, CO, SO2, O2 and NOx emissions from the oxy – fuel combustion in a circulating fluidized bed. Fuel Process. Technol., 92, 590–596. DOI: 10.1016/j.fuproc.2010.11.015.
  • 20. Krzywański J., Rajczyk R., Bednarek M., Wesolowska M., Nowak W., 2013. Gas emissions from a large scale circulating fluidized bed boilers burning lignite and biomass. Fuel Process. Technol., 116, 27–34. DOI: 10.1016/j.fuproc.2013.04.021.
  • 21. Krzywański J., Rajczyk R., Komorowski M., Nowak W., 2012. Model research of coal and biomass cocombustion in a large scale circulating fluidized bed boiler, 37th International Technical Conference on Clean Coal & Fuel Systems, Clearwater, FL, USA, 2012.
  • 22. Kunii D., Levenspiel O., 1997. Circulating fluidized-bed reactors. Chem. Eng. Sci., 52, 2471–2482. DOI: 10.1016/S0009-2509(97)00066-3.
  • 23. Leckner B., 2007. Co-combustion – A summary of technology. Thermal Sci., 11, 5–40. DOI: 10.2298/TSCI0704005L.
  • 24. Leckner B., 2008. The role of CFB in co-combustion. 9th International Conference on Circulating Fluidized Beds in conjunction with the 4th International VGB Workshop Operating Experience with Fluidized Bed Firing Systems, Hamburg, Germany, 2008.
  • 25. Leckner B., Amand L.-E., Lucke K., Werther J., 2004. Gaseous emissions from co-combustion of sewage sludge and coal/wood in a fluidized bed. Fuel, 83, 477–486. DOI: 10.1016/j.fuel.2003.08.006.
  • 26. Liu H., Gibbs B.M., 2002. Modelling of NO and N2O emissions from biomass – fired circulating fluidized bed combustors. Fuel 81, 271–280. DOI: 10.1016/S0016-2361(01)00170-3.
  • 27. Lyngfelt A., Leckner B., 1999. Combustion of wood-chips in circulating fluidized bed boilers – NO and CO emissions as functions of temperature and air-staging. Fuel, 78, 1065–1072. DOI: 10.1016/S0016-2361(99)00006-X.
  • 28. McIlveen-Wright D.R., Pinto F. , Armesto L., Caballero M.A., Aznar M.P., Cabanillas A., Huang Y., Franco C., Gulyurtlu I., McMullan J.T., 2006. A comparison of circulating fluidised bed combustion and gasification power plant technologies for processing mixtures of coal, biomass and plastic waste. Fuel Process. Technol., 87, 793–801. DOI: 10.1016/j.fuproc.2006.04.002.
  • 29. Mukadi L., Guy C., Legros R., 2000. Prediction of gas emissions in an internally circulating fluidized bed combustor for treatment of industrial solid wastes. Fuel, 79, 1125–1136. DOI: 10.1016/S0016-2361(99)00251-3.
  • 30. Muskała W., Krzywański J., Sekret R, Nowak W., 2008. Model research of coal combustion in circulating fluidized bed boilers. Chem. Process Eng., 29, 473–492.
  • 31. Nussbaumer T., 2003. Combustion and co-combustion of biomass: fundamentals, technologies, and primary measures for emission reduction. Energy Fuels, 17, 1510–1521. DOI: 10.1021/ef030031q.
  • 32. Peters M.H., Fan L.S., Sweeney T.L., 1982. Reactant dynamics in catalytic fluidized bed reactors with flow reversal of gas in the emulsion phase. Chem. Eng. Sci., 37,553–565. DOI: 10.1016/0009-2509(82)80118-8.
  • 33. Rajczyk R., Mirek P., Walkowiak R., Nowak W., 2011. Operational experience in the material department (PGE GiEK) of the Turow Power Plant, VGB Powertech 9, 90–93.
  • 34. Saraiva P.C., Azvedo J.L.T., Carvalho M.G., 1993. Mathematical simulation of a circulating fluidized bed combustor. Combust. Sci. Technol., 93, 223–243. DOI: 10.1080/00102209308935291.
  • 35. Sami M., Annamalai K., Wooldridge M., 2001. Co-firing of coal and biomass fuel blends. Progr. Energ. Combust., 27, 171–214. DOI: 10.1016/S0360-1285(00)00020-4.
  • 36. Skreiberg O., Kilpinen P., Glarborg P., 2004. Ammonia chemistry below 1400 K under fuel-rich conditions in a flow reactor. Combust. Flame 136, 501–518. DOI: 10.1016/j.combustflame.2003.12.008.
  • 37. Suuberg E.M., Peters W.A. Howard J.V., 1978. Proc. 17 – Symp. Combustion (Int.) Combustion Institute. 1978, Pittsburgh, USA, 117–130.
  • 38. Thunman H., Leckner B., Niklasson F., Johnsson F., 2002. Combustion of wood particles — A particle model for Eulerian calculations. Combust. Flame, 129, 30–46. DOI: 10.1016/S0010-2180(01)00371-6.
  • 39. Tomeczek J. (1992). Spalanie węgla. Wydawnictwo Politechniki Śląskiej Gliwice, Poland.
  • 40. Tomeczek J., Gradoń B., 2003. The role of N2O and NNH in the formation of NO via HCN in hydrocarbon flames. Combust. Flame, 133, 311–322. DOI: 10.1016/S0010-2180(03)00013-0.
  • 41. Tsujimura M., Furusawa T., Kunii D., 1983. Catalytic reduction of nitric oxide by hydrogen over calcined limestone. J. Chem. Eng. Jpn., 16, 524–526.
  • 42. Werther J., 2005. Fluid dynamics, temperature and concentration fields in large – Scale CFB combustors. 8-th International Conference on Circulating Fluidized Beds, 2005, Hangzhou, China.
  • 43. Werther J., 2009. Potentials of biomass co-combustion in coal-fired boilers. 20th International Conference on Fluidized Bed Combustion, 2009, Xi’an China.
  • 44. Yu Z.S., Ma X.Q., Lai Z.Y., Xiao H.M., 2009. CFD modelling applied to the co-combustion of paper sludge and coal in a 130 t/h CFB boiler. 20th International Conference on Fluidized Bed Combustion, 2009
  • 45. Xi’an China. Zhou W., Zhao C., Duan L., Liu D., Chen X., 2011. CFD modelling of oxy-coal combustion in circulating fluidized bed. Int. J. Greenh. Gas Con., 5, 1489–1497. DOI: 10.1016/j.ijggc.2011.08.006.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-49d9d23c-034b-4a9d-bc77-4873f8b021d8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.