
Journal of Polish  Safety and Reliability Association 

Summer Safety and Reliability Seminars, Volume 9, Number 3, 2018                     

 

 39 

Malinowski Jacek 
Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland 

 

 

 

A simple tool for evaluating the risks related to hazardous interactions 

between the processes realized in the Baltic Sea Region port areas 
 

 

 

 

 

Keywords  
 

probabilistic modeling; hazardous, harmful or catastrophic events; processes interaction; cascading effect; risk 

calculation. 

 

Abstract  
 

This paper is a continuation of [1] which presents a probabilistic model of hazard-related interactions between 

different operations carried out in a (generic) Baltic Sea Region port area. Each such operation, considering its 

hazardous aspect, is defined as a series of undesired events (emergencies and/or accidents) occurring at random 

instants, i.e. as a random process. An event can be primary (occurring by itself) or secondary (caused by another 

event in the same or another process). The processes interact in the sense that a primary event in one process can 

cause a cascade of events spanning multiple processes.  

In [1] the formulas were derived for the cause-effect probabilities expressing the impact of a single event on the 

occurrence of the ensuing events in the triggered cascade. Also, the formulas for risks of undesired events, using 

these probabilities, were obtained. As these formulas are complicated and difficult to implement numerically, the 

need arose to develop a simple tool for computing the considered risks. Such a tool, in the form of an easy-to-

implement algorithm, along with an illustrative example is presented in the current work. 

 

 
1. Notation and definitions  
 

1.1 General notation 

p1,…,pn – the individual processes as the model of 

operations realized in the considered port 

environment; n – the number of these processes 

E1
(i),…,Em(i)

(i) – different primary events that can occur 

in the process pi; m(i) – the number of events in 

process pi 

g(i, a) – maximum strength of event Ea
(i) in process pi 

1
(i),…,m(i)

(i) – the intensities with which 

E1
(i),…,Em(i)

(i) occur as primary events; the sequence 

of primary Ea
(i) is a Poisson process with the intensity 

a
(i) 

∐i=1,…,r xi – the “inverted pi” operation on numbers 

from the interval [0, 1], defined as follows: 

    ∐ 𝑥𝑖𝑖=1,…,𝑟 = 1 − ∏ (1 − 𝑥𝑖)𝑖=1,…,𝑟   

The above operation is used to compute the 

probability of a sum of independent events, i.e. 

Pr(⋃i=1,…,r Ai) = ∐i=1,…,r P(Ai) if the events 

A1,…,Ar are independent. 

 

1.2 The cause-effect probabilities  

a,b
(i,j)(x, y) – probability that event b of strength y in 

process pj is directly caused by event a of strength x in 

process pi 

a,b
(i,j)(x, y, h) – probability that event b of strength y 

in process pj occurs in step h (but not in step <h) of a 

cascade triggered by event a of strength x in process i; 

<h denotes less-than-h 

a,b
(i,j)(x, >y) – probability that event b of strength >y 

in process pj is directly caused by event a of strength 

x in process pi; note that a,b
(i,j)(x, >y) =  z>y a,b

(i,j)(x, 

z); >y denotes greater-than-y 

a,b
(i,j)(x, >y, h) – probability that event b of strength 

>y in process pj occurs in step h (but not in step <h) of 

a cascade triggered by event a of strength x in process 

pi 
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1.3 Risks of harmful events 

Rb
(j)(k, s, t, 0) – the probability that exactly k primary 

events Eb
(j) occur in the time interval (s, t] 

Rb
(j)(k, s, t, h) – the probability that exactly k events 

Eb
(j) occur in the time interval (s, t], where each Eb

(j) is 

a result of a cascade of step h (but not of step <h), h1 

Rb
(j)(k, s, t) – the probability that exactly k events Eb

(j) 

(whether primary or not) occur in the time interval (s, 

t] 

 

2. Introduction  
 

This paper is a continuation of [1] which presents a 

probabilistic model of hazard-related interactions 

between different operations carried out in a (generic) 

Baltic Sea Region port area. Each such operation, 

considering its hazardous aspect, is defined as a series 

of undesired events (emergencies and/or accidents) 

occurring at random instants, i.e. as a random process. 

An event can be primary (occurring by itself) or 

secondary (caused by another event in the same or 

another process). The processes interact in the sense 

that a primary event in one process can cause a 

cascade of events spanning multiple processes.  

In [1] the formulas were derived for the cause-effect 

probabilities expressing the impact of a single event 

on the occurrence of the ensuing events in the 

triggered cascade. The considered probabilities are 

defined in Notation section and in the “complete” 

version take into account the strengths of both the 

triggering events and their effects. In this paper the 

model developed in [1] is simplified in that the 

considered events are assumed to be one-state, i.e.  

their strengths are assumed irrelevant – an event just 

occurs or not. In consequence, the above mentioned 

formulas become simpler –  they are presented in 

section 3.  

The cause-effect probabilities are used in the 

formulas, also derived in [1], expressing the risks of 

undesired events. Their simplified versions are given 

in Section 4. Even after neglecting the events’ 

strengths the formulas of both groups still somewhat 

complicated and difficult to implement numerically, 

thus it became necessary to develop a simple tool for 

computing the considered risks. Such a tool, in the 

form of an easy-to-implement algorithm, along with 

an illustrative example is presented in Sections 5 and 

6. For convenience of notation and ease of numerical 

implementation, all the formulas and the algorithm’s 

pseudo-code are written using the matrix calculus 

notation. In Section 3 a non-standard matrix operation 

is defined in order to express the cause-effect 

probabilities in a compact form that can be easily 

translated into a computer code. 

3. Computing the cause-effect probabilities  
 

In [1] the following key lemma has been formulated 

and proved, as the basis for the cause-effect 

probabilities computation: 

 

Lemma 1 

If both the internal impact and feedback effect are 

taken into consideration, then a,b
(i,j)(x, >y, h), 

where h2, is given by the following recursive 

formula: 

  𝜋𝑎,𝑏
(𝑖,𝑗)(𝑥, > 𝑦, ℎ) =  

    = ∐ ∑ 𝜋𝑎,𝑐
(𝑖,𝑘)(𝑥, 𝑧) ×

 
𝑧=0,…,𝑔(𝑘,𝑐)

𝑧≤𝑦  𝑖𝑓 (𝑘,𝑐)=(𝑗,𝑏)

𝑘=1,…,𝑛
𝑐=1,…,𝑚(𝑘)

   

       × 𝜋𝑐,𝑏
(𝑘,𝑗)(𝑧, > 𝑦, ℎ − 1)   (1) 

where  

𝜋𝑐,𝑏
(𝑘,𝑗)(𝑧, > 𝑦, 1) = 𝜋𝑐,𝑏

(𝑘,𝑗)(𝑧, > 𝑦) =  

     = ∑ 𝜋𝑐,𝑏
(𝑘,𝑗)(𝑧, 𝑢)𝑢>𝑦    (2) 

Remark 1: 

Under the adopted assumptions, (1) also holds for 

(j,b)=(i,a), and (k,c)=(j,b) is in the range of the 

“inverted pi” operator (feedback effect). However, it 

should be remembered that a,c
(i,k)(x,z) = 0 for 

(k,c)=(i,a) and c,b
(k,j)(z, >y, 1) = 0 for (k,c)=(j,b). For 

explanation see formula (1) in [1]. 
 

Remark 2: 

If (k,c)=(j,b), then z>y are not in the range of the 

summation operator, because taking such z into 

consideration would amount to admitting the 

possibility that Ea
(i) directly causes Eb

(j) of strength >y. 

This would contradict the requirement that Eb
(j) of 

strength >y cannot be a <h-step cascading effect of 

Ea
(i). 

 

Our risk evaluation method in its simplified version 

regards the unwanted events as one-state  only, i.e. the 

events are not graded according to their strength. For 

consistency, we assume that the event triggering a 

cascade occurs at its step 0, and the event occurring at 

step h directly causes one or more events occurring at 

step h+1, h0. Thus, the following cause-effect 

probabilities will be considered throughout the rest of 

the paper: 

(i,j)(a, b) – probability that event Ea
(i) in process pi 

directly causes event Eb
(j) in process pj  (first grade C-

E probability) 
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(i,j)(a, b, h) – probability that event Eb
(j) in process pj 

occurs in step h (but not in step <h) of a cascade 

triggered by event Ea
(i) in process pi, h1; if h=1 then 

(i,j)(a, b, 1) = (i,j)(a, b) (h-th grade C-E probability). 

If strengths of events are not taken into account, 

Lemma 1 has the following equivalent. 
 

Lemma 2 

For h2 and (j,b)  (i,a) the following recursive 

formula holds: 

𝜋(𝑖,𝑗)(𝑎, 𝑏, ℎ) = [1 − 𝜋(𝑖,𝑗)(𝑎, 𝑏)] ×  

    × ∐ [
𝜋(𝑖,𝑘)(𝑎, 𝑐) ×

𝜋(𝑘,𝑗)(𝑐, 𝑏, ℎ − 1)
]𝑘=1,…,𝑛

𝑐=1,…,𝑚(𝑘)

  (3) 

For h1 we have: 

𝜋(𝑖,𝑖)(𝑎, 𝑎, ℎ) = 0    (4) 

 

Proof: Let Ea,i,c,k and Ec,k,b,j
(h), h1, be events defined 

as follows: 

 

Ea,i,c,k = {an instance of Eb
(j) is directly caused by an 

instance of Ea
(i)} 

Ec,k,b,j
(h) = {an instance of Eb

(j) occurs in step h (but 

not in step <h) of the cascade triggered by an 

instance of Ec
(k)}; clearly, Ea,i,c,k = Ea,i,c,k

(1) 

 

The probabilities (i,i)(a, a, h), h1, i=1,…,m, 

a=1,…,m(i), are equal to zero, because the underlying 

events Ea,i,a,i
(h) are impossible. Indeed, for Ea,i,a,i

(h) to 

take place the triggering event Ea
(i) should occur at 

step 0 of the cascade, but the definition of Ea,i,a,i
(h) 

yields that Ea
(i) cannot occur at step <h, hence Ea,i,a,i

(h) 

is an impossible event. 

Let now h2 and (j,b)(i,a). The event Ea,i,b,j
(h) takes 

place if (1) a pair of consecutive events Ea,i,c,k
(1) 

and Ec,k,b,j
(h–1) occurs, where k=1,…,n, c=1,…,m(k), 

(k,c)(j,b), and (2) the event Ea,i,b,j
(1) does not occur. 

The condition (k,c)(j,b) and the second requirement 

are in place to ensure that Eb
(j) does not occur at step 

one, according to the definition of Ea,i,b,j
(h). We thus 

have: 

𝜋
(𝑖,𝑗)(𝑎, 𝑏, ℎ) =  

    = Pr

[
 
 
 
 

(¬𝐸𝑎,𝑖,𝑏,𝑗) ∩

(⋃ [𝐸𝑎,𝑖,𝑐,𝑘 ∩ 𝐸𝑐,𝑘,𝑏,𝑗
(ℎ−1)

]𝑘=1,…,𝑛
𝑐=1,…,𝑚(𝑘)

(𝑘,𝑐)≠(𝑗,𝑏)

)

]
 
 
 
 

 (5) 

As assumed in [1], the triggering events along with 

the triggered cascades are mutually independent, 

hence (3) is a direct consequence of (5); (k,c)=(j,b) 

can be included in the range of the operator ∐ in (3), 

because, in view of (4), if (k,c)=(j,b) then 

(i,k)(a, c)(k,j)(c, b, h–1) = = (i,j)(a, b)(j,j)(b, b, h–

1) = 0.  
 

Remark: When applying (3) it should be taken 

into account that (i,k)(a, c) = 0 for (k,c)=(i,a), 

according to (4). 
 

The behavior of the considered multi-process 

environment can be described by the collection of  

matrices (i,j)(h), i,j=1,…,n, h1, where (i,j)(a, b, h) is 

the element in row a and column b of matrix 

(j,i)(h), a=1,…,m(i), b=1,…,m(j). Thus, matrix 

(i,j)(h) expresses the impact of events occurring in 

process i on the events in process j, where the latter 

events are h-step (but not <h-step) cascading effects 

of the former ones. For a fixed h, matrices (i,j)(h), 

i,j=1,…,n can be arranged in matrix (h) as in Figure 

1. 

 

   (h) = 

)()()(

)()()(

)()()(

),()2,()1,(

),2()2,2()1,2(

),1()2,1()1,1(

hhh

hhh

hhh

nnnn

n

n















 

Figure 1. Matrix (h) composed of matrices (i,j)(h), 

i,j=1,…,n. 

 

Let us note that (h) is a square matrix, because (i,j)(h) 

has m(i) rows and m(j) columns, hence (h) has 

i=1,…,n m(i) rows and j=1,…,n m(j) columns, thus the 

same number of rows and columns. Also, according 

to (3), (i,j)(a, b, h) is computed using, for each 

successive k=1,…,n, the elements from the row a of 

(i,k)(1) and the column b of (k,j)(h–1), which means 

that in order to obtain ( m(1)+…+m(i–1)+a, 

m(1)+…+m(j–1)+b ) we use the elements from the 

row m(1)+…+m(i–1)+a of (1) and the column 

m(1)+…+m(j–1)+b of (h–1). 

By analogy to the usual multiplication operation on 

matrices, where  

   (A  B)(p,q) = r=1,…,(A) A(p,r)B(r,q)  (6) 

let us define an operation  in the following way: 

   (A  B)(p,q) = 

    = [1 – A(p,q)] ∐r=1,…, (A)A(p,r)B(r,q)  (7) 
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for pq, and 

   (A  B)(p,p) = 0    (8) 

where (A) is the number of A’s columns and ∐ is the 

“inverted pi” operation defined in Notation section. 

Let us note that (7) and (8) convert to (3) and (4) if we 

put A=(1) and B=(h–1). We can thus put (3) and (4) 

in a much simpler form: 

   (h) = (1)  (h–1)    (9) 

As follows from the previous paragraph, the element 

in row p and column q of (h) is obtained using the 

elements in row p of (1) and column q of (h–1), 

similarly as in matrix multiplication. However, 

comparing (6) with (7) and (8) we see that  is not the 

matrix multiplication operation. The formula (9), 

being a shortened version of (3) and (4), is used to 

obtain the cause effect probabilities needed for 

computing the risks of unwanted events. The formulas 

for computing these risks are presented in the next 

section. 

  

4. Computing the risks of unwanted events  
 

This section starts with one assertion and two 

theorems. They were already given in [1], but here 

they are presented in simplified versions, strength of 

events not being taken into account. 
 

Assertion 1 

Primary events Eb
(j) constitute a Poisson process with 

the intensity b
(j). 

This assertion repeats of one of the general 

assumptions. 
 

Theorem 1 (direct impact) 

The events Eb
(j) directly caused by primary events Ea

(i) 

constitute a Poisson process with the intensity a,b
(i,j) = 

a
(i) (i,j)(a,b). 

Further, the occurrences of Eb
(j) directly caused by any 

primary event in any process (excluding Eb
(j)), 

constitute a Poisson process with the intensity given 

by the following formula: 

 

   Λ𝑏
(𝑗)(1) =  

       = ∑ 𝜆𝑎
(𝑖) ⋅ 𝜋(𝑖,𝑗)(𝑎, 𝑏)𝑖=1,…,𝑛

𝑎=1,…,𝑚(𝑖) 

  (10) 

It should be remembered that (i,j)(a, b)=0 for 

(a,i)=(b,j). 

 

In order to shorten the notation and facilitate the 

numerical implementation, (10) can be converted to 

the following form: 

   (1) =   (1)                (11) 

where  is the usual matrix multiplication operation, 

(1) is defined in Fig. 1, while  and (1) are one-row 

matrices composed of the intensities b
(j) and b

(j)(1) 

respectively, and defined as follows: 

    = [1
(1),…, m(1)

(1),…, 1
(n),…, m(n)

(n)] 

 (12) 

and 

   (1) = [1
(1)(1),…, m(1)

(1)(1),…,  

    1
(n)(1),…, m(n)

(n)(1)]   (13) 

 

Theorem 2 (cascading effect of step h2) 

Let h2. The events Eb
(j) each of which is a h-step (but 

not <h-step) cascading effect of a primary event Ea
(i) 

constitute a Poisson process with the intensity 

a,b
(i,j)(h) = a

(i) (i,j)(a, b, h), where the probabilities 

(i,j)(a, b, h) are given by (3) or (8).   

Further, the events Eb
(j) each of which is a h-step (but 

not <h-step) cascading effect of any primary event in 

any process (excluding Eb
(j)), constitute a Poisson 

process with the intensity given by the following 

formula: 

   Λ𝑏
(𝑗)(ℎ) =  

       = ∑ 𝜆𝑎
(𝑖) ⋅ 𝜋(𝑖,𝑗)(𝑎, 𝑏, ℎ)𝑖=1,…,𝑛

𝑎=1,…,𝑚(𝑖)

  (14) 

It should be remembered that (i,j)(a, b, h)=0 for 

(a,i)=(b,j). 

 

Corollary from Assertion 1 and Theorems 1 and 2:  

The risk Rb
(j)(k, s, t, h), h0, i.e. the probability that 

exactly k events Eb
(j) occur in the time interval (s, t], 

each event being a result of h-step (but not less-than-

h-step) cascade triggered by any primary event 

(different than Eb
(j)), is found from the following 

formula: 

𝑅𝑏
𝑗(𝑘, 𝑠, 𝑡, ℎ) =

[Λ𝑏
(𝑗)(ℎ)⋅(𝑡−𝑠)]

𝑘

𝑘!
×  

    × exp [−Λ𝑏
(𝑗)(ℎ) ⋅ (𝑡 − 𝑠)]   (15) 
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Let us note that Rb
(j)(0,s,t,h) is the probability that 

none of the above specified events Eb
(j) occurs in the 

(s,t] interval, thus 1–Rb
(j)(0,s,t,h) is the probability that 

at least one such event occurs in that interval. 

Formula (14), in the same way as (10), can be 

converted to the following form: 

   (h) =   (h)    (16) 

where ,  and (h) have been already defined, and 

(h) is a one-row matrix composed of the intensities 

b
(j), and defined as follows: 

   (h) = [1
(1)(h),…, m(1)

(1)(h),…,  

    1
(n)(h),…, m(n)

(n)(h)]   (17) 

Let us now define the stochastic process Xt
(b,j) as the 

number of events Eb
(j), whether primary or not, in the 

time interval (0, t]. The following theorem holds: 

 

Theorem 3 

Xt
(b,j) is a Poisson process with the following intensity: 

   b
(j) = b

(j) + h1 b
(j)(h)   (18) 

In practice, the sum in (18) is only computed for 

several values of h, i.e. for hhmax, where hmax is such 

that b
(j)(h) is close to 0 for h>hmax. 

 

Proof: Due to the assumption that primary events in 

all the processes are mutually independent, and 

cascades of events occur instantaneously, Xt
(b,j) is a 

superposition of independent processes Xt
(b,j,h) , h0, 

where Xt
(b,j,h) is the number of events Eb

(j) in the 

interval (0, t], such that each Eb
(j) is the result of a h-

step cascade triggered by a primary Ea
(i), (a,i)(b,j) for 

h1. From Assertion 1 and Theorems 1 and 2 it 

follows that Xt
(b,j) is a Poisson process with the 

intensity given by (18), Q.E.D. 
 

Corollary: 

The risk Rb
(j)(k, s, t), i.e. the probability that exactly k 

events Eb
(j) (whether primary or not) occur in the time 

interval (s, t] is found from the following formula: 

 

𝑅𝑏
𝑗(𝑘, 𝑠, 𝑡) = ∑ 𝑅𝑏

𝑗(𝑘, 𝑠, 𝑡, ℎ)ℎ≥0 =  

    =
[Λ𝑏

(𝑗)
⋅(𝑡−𝑠)]

𝑘

𝑘!
exp [−Λ𝑏

(𝑗)
⋅ (𝑡 − 𝑠)]  (19) 

where b
(j) is given by (18). 

 

Let us note that Rb
(j)(0,s,t) is the probability that no 

event Eb
(j) (whether primary or not) occurs in the (s,t] 

interval, thus 1–Rb
(j)(0,s,t) is the probability that at 

least one event Eb
(j) occurs in that interval. 

 

Theorem 4 

Formula (19) can be put in the following simpler 

form: 

    =  +   h1 (h)    (20) 

where + and  are the usual addition operations on 

matrices, and  is a one-row matrix composed of the 

intensities b
(j), and defined as follows: 

    = [1
(1),…, m(1)

(1),…, 1
(n),…, m(n)

(n)] (21) 

In practice, the sum in (20) is only computed for 

several values of h, i.e. for hhmax, where hmax is such 

that the elements of (h) are close to 0 for h>hmax. 

 

Proof: The definition of  and formula (18) yield: 

    =  + h1 (h)    (22) 

In view of (16) and distributivity of matrix 

multiplication w.r.t. addition the above equality 

converts to: 

    =  + h1   (h) =  +   h1 (h) (23) 

Q.E.D. 

 

Corollary: 

With use of (20) the elements of  are computed much 

faster than by using (18) or (22). If (22) along with 

(16) is applied, then each (h), h1, is computed 

individually, i.e. hmax matrix multiplications are 

executed. In turn, (20) requires only one matrix 

multiplication and hmax–1 additions to be executed, 

and adding (h) to (h+1) is numerically less complex 

than multiplying  by (h). However, we need (h) to 

compute the risk Rb
(j)(k, s, t, h). 

 

5. The risk evaluation algorithm  
 

Based on the results of Sections 3 and 4 the following 

algorithm for computing the risk of occurrence of one 

or more instances of Eb
(j) in the time interval (s, t] is 

constructed: 

 

1. Arrange the input data into the matrixes  and (1) 

defined respectively by (12) and Fig. 1 

2. Using (9) determine the matrices (h), h2 

3. Using (11) and (16) determine the matrices (h), 

h1 defined by (13) and (17) 

4. Using (18) determine the matrix  defined by (21) 
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5. Compute the risks Rb
(j)(k, s, t), j=1,…,n, 

b=1,…,m(j) for given k, s and t 

 

In practice, the computations are carried out only for 

the first several values of h for which the elements of 

(h) differ significantly from 0. The author has 

implemented the algorithm as a computer program 

whose example results are presented in the next 

section. 

 

6. A real-life example  
 

Let us consider three processes being realized in a port 

area which incorporates oil and container terminals: p1 

– vessel traffic to or from the harbor, p2 – crude oil 

transfer to or from tankers in the oil terminal, p3 – 

truck traffic to and from the container terminal. The 

following events can occur in the individual 

processes: 

In p1: 

E1
(1) – vessel collision with another vessel or pier, 

E2
(1) – spill of burning oil in the port waters, 

E3
(1) – vessel on fire; 

In p2:  

E1
(2) – pipeline or hose damage and/or ignition,  

E2
(2) – onshore tank on fire; 

In p3:  

E1
(3) – truck accident. 

Let us assume that the following cause-effect relations 

hold between the above events: 

E1
(1)  E2

(1), E2
(1)  E3

(1), E2
(1)  E1

(2) 

E1
(2)  E2

(2), E2
(2)  E1

(2), E1
(2)  E2

(1) 

E1
(3)  E1

(2) 

which means that (1,1)(1,2), (1,1)(2,3), (1,2)(3,1), 

(2,2)(1,2), (2,2)(2,1), (2,1)(1,2) and (3,2)(1,1) have 

non-zero values, and all other 1-st grade C-E 

probabilities are equal to zero. We also assume that 

only the events E1
(1) (vessel collision), E3

(1) (vessel on 

fire), E2
(2) (tank on fire) and E1

(3) (truck accident) can 

occur as primary ones, i.e. only the respective 

intensities b
(j) are greater than 0. The unit of each 

b
(j), j=1,…,n, b=1,…,m(j) is 1/year, thus, on average, 

one instance of Eb
(j) as a primary event occurs in a 

period of 1/b
(j) years.  

The author-developed computer program based on the 

algorithm from Section 5, applied to the above 

described case, produced the following output: 

 

INPUT DATA PRINTOUT: 
 

Number of processes: 3 

Number of events in process 1: 3 

Number of events in process 2: 2 

Number of events in process 3: 1 

 

Matrix lambda[j,b], j=1,...,n, b=1,...,m(j): 

0.5000 0.0000 0.5000  

0.0000 0.5000  

0.5000  

 

Matrix pi_1: 

0.0000 0.5000 0.0000    0.0000 0.0000    0.0000     

0.0000 0.0000 0.9000    0.0000 0.0000    0.0000     

0.0000 0.0000 0.0000    0.4000 0.0000    0.0000     

0.0000 0.9000 0.0000    0.0000 0.9000    0.0000     

0.0000 0.0000 0.0000    0.5000 0.0000    0.0000     

0.0000 0.0000 0.0000    0.8000 0.0000    0.0000     

 

RESULTS PRINTOUT: 
 

Matrix Lambda_1[j][b]: 

0.0000 0.2500 0.0000  

0.8500 0.0000  

0.0000  

 

Matrix Lambda_2[j][b]: 

0.0000 0.7650 0.2250  

0.0000 0.5400  

0.0000  

 

Matrix Lambda_3[j][b]: 

0.0000 0.0000 0.5265  

0.0900 0.0000  

0.0000  

 

Matrix Lambda_4[j][b]: 

0.0000 0.0344 0.0000  

0.0000 0.0810  

0.0000  

 

Matrix Lambda_5[j][b]: 

0.0000 0.0000 0.2369  

0.0000 0.0175  

0.0000  

 

Cascades of step >5 are neglected. 

RISK MATRICES FOR DIFFERENT TIME AND 

QUANTITY PARAMETERS 
 

Matrix R[j][b](2.00 years, 0 events): 

0.3679 0.1226 0.0510  

0.1526 0.1026  

0.3679  

 

Each of the above values subtracted from 1 is the 

probability that at least one respective Eb
(j) (whether 

primary or not) occurs in a 2-year period. 

 

Matrix R[j][b](2.00 years, 1 event): 

0.3679 0.2573 0.1517  

0.2869 0.2336  
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0.3679  

 

Matrix R[j][b](2.00 years, 2 events): 

0.1839 0.2700 0.2258  

0.2697 0.2660  

0.1839  

 

Matrix R[j][b](2.00 years, 3 events): 

0.0613 0.1889 0.2240  

0.1690 0.2019  

0.0613  

 

Matrix R[j][b](2.00 years, 4 events): 

0.0153 0.0991 0.1667  

0.0794 0.1149  

0.0153  

 

Matrix R[j][b](2.00 years, 5 events): 

0.0031 0.0416 0.0993  

0.0299 0.0523  

0.0031  

 

Matrix R[j][b](2.00 years, 6 events): 

0.0005 0.0146 0.0492  

0.0094 0.0199  

0.0005  

 

Matrix R[j][b](2.00 years, 7 events): 

0.0001 0.0044 0.0209  

0.0025 0.0065  

0.0001  

 

Matrix R[j][b](2.00 years, 8 events): 

0.0000 0.0011 0.0078  

0.0006 0.0018  

0.0000  

 

Matrix R[j][b](2.00 years, 9 events): 

0.0000 0.0003 0.0026  

0.0001 0.0005  

0.0000  

 

Matrix R[j][b](2.00 years, 10 events): 

0.0000 0.0001 0.0008  

0.0000 0.0001  

0.0000 

 

Clearly, the presented model is a simplified 

representation of a complex conglomerate of technical 

facilities and operations that constitute a real port 

environment. Also, the intensities b
(j) and 

probabilities a,b
(i,j)  are example values rather than 

expert elicited ones or statistically processed 

operational data. 
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