PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Effect of Si, B, Al2O3 and ZrO2 nano-modifiers on the structural and mechanical properties of Fe + 0.5% C alloy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present study, we have incorporated different nanoparticles such as silicon (Si), boron (B), alumina (Al2O3) and zirconium (ZrO2) as modifiers in Fe + 0.5% C alloy to evaluate its influence in it. The properties such as hardness, volume shrinkage/swelling, flexural strength, relative density and fracture analysis of Fe + 0.5% C alloys with and without nanomodifier are also analyzed. The obtained result reveals that incorporation of Si, and B nanoparticles greatly improves the hardness, volume shrinkage/swelling, flexural strength, and relative density of Fe + 0.5% C alloys by increasing grain numbers and reducing the porosity. The SEM analysis of fractured samples clearly showed the involvement of nanoparticles during the alloy formation. Si and B nanoparticles completely entered into the grain and leads to the improvement of structural and mechanical properties of the alloy. However, Al2O3 and ZrO2 nanoparticles are observed on the surface of the grain, which clearly indicates that it does not take part in the alloy formation, which leads to affect its structural and mechanical properties. Thus, this study enlightens the use of nano Si and B as a modifier to enhance the structural and mechanical properties of Fe + 0.5% C alloy via powder metallurgy.
Rocznik
Strony
669--676
Opis fizyczny
Bibliogr. 34 poz., rys., wykr.
Twórcy
  • Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology ‘‘MISiS’’, Leninskiy Pr. 4, Moscow 119049, Russia
  • Department of Biotechnology, K. S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode 637215, Tamil Nadu, India
autor
  • Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology ‘‘MISiS’’, Leninskiy Pr. 4, Moscow 119049, Russia
autor
  • Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology ‘‘MISiS’’, Leninskiy Pr. 4, Moscow 119049, Russia
  • Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology ‘‘MISiS’’, Leninskiy Pr. 4, Moscow 119049, Russia
autor
  • Department of Physics, K. S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode 637215, Tamil Nadu, India
autor
  • Department of Physics, K. S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode 637215, Tamil Nadu, India
autor
  • G. R. Derzhavin Tambov State University, 33, Internatsionalnaya Street, Tambov 392000, Russia
autor
  • Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology ‘‘MISiS’’, Leninskiy Pr. 4, Moscow 119049, Russia
Bibliografia
  • [1] V.I. Muravev, P.V. Bakhmatov, N.O. Pletnev, A.A. Debelyak, Influence of the stress state on the structure and properties of welded steel and alloy structures, Steel in Translation 46 (2016) 256–259.
  • [2] X.C. Zhong, X.L. Feng, X.W. Huang, X.Y. Shen, Z.W. Liu, Structure and magnetocaloric effect of La0.7Ce0.3 (Fe0.92Co0.08)11.4Si1.6 bulk alloy prepared by powder metallurgy, Journal of Alloys and Compounds 685 (2016) 913–916.
  • [3] J. Feng, H. Sun, X. Li, J. Zhang, W. Fang, W. Fang, Microstructures and mechanical properties of the ultrafine-grained Mg–3Al–Zn alloys fabricated by powder metallurgy, Advanced Powder Technology 27 (2016) 550–556.
  • [4] A. Guittoum, A. Layadi, H. Tafat, A. Bourzami, N. Souami, O. Lenoble, Structure, Mossbauer and magnetic studies of nanostructured Fe80Ni20 alloy elaborated by mechanical milling, Philosophical Magazine 88 (2008) 1085–1098.
  • [5] R.K. Singh Raman, Rajeev K. Gupta, Carl C. Koch, Resistance of nanocrystalline vis-à-vis microcrystalline Fe–Cr alloys to environmental degradation and challenges to their synthesis, Philosophical Magazine 90 (2010) 3233–3260.
  • [6] S. Wang, X. Zhao, N. Xiao, L. Zuo, High magnetic field influence on the Widmanstätten transformation in high purity Fe–0.36 wt% C alloy, Journal of Materials Science & Technology 28 (2012) 552–557.
  • [7] D.B. Wagner, Iron and Steel in Ancient China: Second Impression, With Corrections, E.J. Brill Academic Pub., 1996.
  • [8] P.K. Sinha, M.K. Kumar, V. Kainm, Effect of microstructure of carbon steel on magnetite formation in simulated hot conditioning environment of nuclear reactors, Journal of Nuclear Materials 464 (2015) 20–27.
  • [9] K.W. Li, C.L. Zhuang, J.H. Liu, S.B. Shen, Y.L. Ji, Z.B. Han, Smelting and casting technologies of Fe–25Mn–3Al–3Si twinning induced plasticity steel for automobiles, International Journal of Iron and Steel Research 22 (2015) 75–79.
  • [10] A. Fischer, S. Weib, M.A. Wimmer, The tribological difference between biomedical steels and CoCrMo-alloys, Journal of the Mechanical Behavior of Biomedical Materials 9 (2012) 50–62.
  • [11] A. Wormsen, M. Avice, A. Fjeldstad, L. Reinas, K.A. Macdonald, A.D. Muff, Base material fatigue data for low alloy forged steels used in the subsea industry. Part 1. In air S–N data, International Journal of Fatigue 80 (2015) 477–495.
  • [12] J. Gubicza, 4 – Defects in nanomaterials processed by powder metallurgy, Defect Structure in Nanomaterials (2012) 119–165.
  • [13] H. Galarraga, D.A. Lados, R.R. Dehoff, M.M. Kirka, P. Nandwana, Effects of the microstructure and porosity on properties of Ti–6Al–4V ELI alloy fabricated by electron beam melting (EBM), Additive Manufacturing 10 (2016) 47–57.
  • [14] B. Fu, H.J. Wang, J.X. Yan, L. Xiang, S.T. Qiu, G.G. Cheng, Effects of temperature and alloying elements on g phase fraction of grain-oriented silicon steel, International Journal of Iron and Steel Research 23 (2016) 573–579.
  • [15] P. Namklang, V. Uthaisangsuk, Description of microstructures and mechanical properties of boron alloy steel in hot stamping process, Journal of Manufacturing Processes 21 (2016) 87–100.
  • [16] W.X. Zhao, Y. Wu, S.H. Jiang, H. Wang, X.J. Liu, Z.P. Lu, Micro-alloying effects of yttrium on recrystallization behavior of an alumina-forming austenitic stainless steel, International Journal of Iron and Steel Research 23 (2016) 553–558.
  • [17] C. Weigelt, H. Berek, C.G. Aneziris, S. Wolf, R. Eckner, L. Kruger, Effect of minor titanium additions on the phase composition of TRIP steel/magnesia partially stabilised zirconia composite materials, Ceramics International 41 (2015) 2328–2335.
  • [18] D. Li, Y. Feng, S. Song, Q. Liu, Q. Bai, G. Wu, N. Lv, F. Ren, Influences of Nb-microalloying on microstructure and mechanical properties of Fe–25Mn–3Si–3Al TWIP steel, Materials & Design 84 (2015) 238–244.
  • [19] T. Hamaoka, T.J. Konno, T. Sawabe, K. Nishida, K. Dohi, Effects of molybdenum on precipitation behaviours in aged cast stainless steels, Philosophical Magazine 96 (2016) 2518– 2536.
  • [20] A. Kisko, A.S. Hamada, J. Talonen, D. Porter, L.P. Karjalainen, Effects of reversion and recrystallization on microstructure and mechanical properties of Nb-alloyed low-Ni high-Mn austenitic stainless steels, Materials Science and Engineering A 657 (2016) 359–370.
  • [21] S.K. Karak, J.D. Majumdar, W. Lojkowski, A. Michalski, L. Ciupinski, K.J. Kurzydłowski, I. Manna, Microstructure and mechanical properties of nano-Y2O3 dispersed ferritic steel synthesized by mechanical alloying and consolidated by pulse plasma sintering, Philosophical Magazine 92 (2012) 516–534.
  • [22] GOST 19440-94, Metallic Powders. Determination of Apparent Density. Part 1. Funnel Method. Part 2. Scott Volumeter Method, Interstate Council for Standardization, Metrology and Certification, Minsk, 1996.
  • [23] GOST 20899-75, Metal Powders. Method of Yield Determination, State Committee of the Standards Council of Ministers of USSR, Moscow, 1975.
  • [24] GOST 9013-59, Metals. Method of Measuring Rockwell Hardness, IPK Standards Publishing House, Moscow, 2001.
  • [25] GOST 14019-80, Metallic Materials. Bend Test Method, Interstate Council for Standardization, Metrology and Certification, Minsk, 2006.
  • [26] GOST 18898-89, Powder Products. Methods for Determination of Density, Oil Content and Porosity, The USSR State Committee for Management of Product Quality and Standards, Moscow, 1990.
  • [27] J. Park, S. Lee, S. Kang, J. Jeon, S.H. Lee, H.K. Kim, H. Choi, Complex effects of alloy composition and porosity on the phase transformations and mechanical properties of powder metallurgy steels, Powder Technology 284 (2015) 459–466.
  • [28] S. Kim, Y. Kang, C. Lee, Effect of thermal and thermo-mechanical cycling on the boron segregation behavior in the coarse-grained heat-affected zone of low-alloy steel, Materials Characterization 116 (2016) 65–75.
  • [29] I. El-Mahallawi, H. Abdelkader, L. Yousef, A. Amer, J. Mayer, A. Schwedt, Influence of Al2O3 nano-dispersions on microstructure features and mechanical properties of cast and T6 heat-treated Al Si hypoeutectic alloys, Materials Science and Engineering A 556 (2012) 76–87.
  • [30] H. Abdizadeh, M.A. Baghchesara, Investigation on mechanical properties and fracture behavior of A356 aluminum alloy based ZrO2 particle reinforced metal– matrix composites, Ceramics International 39 (2013) 2045– 2050.
  • [31] J. Wang, S. Lu, L. Rong, D. Li, Effect of silicon contents on the microstructures and mechanical properties of heat affected zones for 9Cr2WVTa steels, Journal of Nuclear Materials 470 (2016) 1–12.
  • [32] H.M. Tawancy, Effect of boron on the properties of ordered N– Mo alloys, Scripta Metallurgica et Materialia 30 (1994) 713– 718.
  • [33] G. Kou, L.-J. Guo, Z.-Q. Li, J. Peng, J. Tian, C.-X. Huo, Microstructure and flexural properties of C/C–Cu composites strengthened with in-situ grown carbon nanotubes, Journal of Alloys and Compounds 694 (2017) 1054–1060.
  • [34] A. Pineau, A.A. Benzerga, T. Pardoen, Failure of metals. I. Brittle and ductile fracture, Acta Materialia 107 (2016) 424– 483.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-49d0a109-edca-4e6a-95b9-8277a22d9f0a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.