PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Biosensory proteinowe i ich właściwości fluorescencyjne

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Protein based biosensors and their fluorescent properties
Języki publikacji
PL
Abstrakty
PL
W pracy zostały opisane biosensory proteinowe oraz ich właściwości fluorescencyjne. Przybliżono podstawy projektowania biosensorów proteinowych oraz strategii stosowanych przy projektowaniu sensorów białkowych:rational protein design (racjonalne projektowanie), directed evolution (ewolucja ukierunkowana), de novo design (projektowanie białek de novo).Zestawiono anality oraz proteiny receptorowe wykorzystywane w badaniach fluorescencyjnych. Opisano zastosowania biosensorów w medycynie.
EN
This paper describes the basics of protein biosensors with particular emphasis on their fluorescent properties. Biosensors are classified on receptor layers with particular emphasis on protein biosensors. There is brought closer the base of protein sensor design, taking into account three strategies commonly use in protein engineering in order to improve sensivity, selectivity and stability of protein biosensor: rational design, directed evolution, de novo design. The main construction problems encountered in the design of biosensor and ways of they solving have been described. The recent research on fluorescent protein biosensors receptor layer is presented. In Table 1 there is given the list of proteins and appropriate fluorescent methods: FRET (Föster Resonance energy Transfer), change in fluorescence emission spectra, for Zn2+, Glc ,Gal ,Fruc, Arab, DMAPIP-b, Ca2+, H2O2, Ca2+, β-CD,CB6, CB7, CFP detection. There is described the use of fluorescent protein based biosensors for clinical application. Biosensors as modern and widely used tools in environmental, medical, food industry have been presented and the future trends in scientific research have been given in the paper.
Słowa kluczowe
Wydawca
Rocznik
Strony
378--381
Opis fizyczny
Bibliogr. 40 poz., tab.
Twórcy
  • Akademia Techniczno-Humanistyczna w Bielsku Białej, Wydział Budowy Maszyn i Informatyki, Katedra Elektrotechniki i Automatyki, 43-309 Bielsko-Biała, ul. Willowa 2
Bibliografia
  • [1] Mosińska L., Fabisiak K., Paprocki K., Kowalska M., Popielarski P., Szybowicz M., Stasiak A.: Diament jako materiał przetwornikowy do produkcji biosensorów, Przemysł Chemiczny 2013/6.
  • [2] Lambrianou A., Denim S., Hall E.: Protein engineering and electrochemical biosensors, Adv Biochem Engin/Biotechnol (2008) 109: 65-96.
  • [3] Parta D.: Synchronous fluorescence based biosensor for albumin determination by cooperative binding of fluorescence probe in suprabimolecular host protein assembly” Biosensors and Bioelectronics 25(2010)1149-1154.
  • [4] Matejczyk M.: Potencjał aplikacyjny biosensorów mikrobiologicznych, Post Mikrobiol 2010, 49,4 297-304.
  • [5] Yi Zhou, Kaihui Chu, Haiku Zhen, Yuan Fang, Cheng Yao: Vizualizing Hg+2 ions In living cells Rusing FRET based fluorescent sensor, Spectochimica Acta Part A: Molecular and Biomolecular Spectroscopy 106 (2013) 197-202.
  • [6] Galban J., Sanz-Vicente I., Ortega E., del Barrio Melisa, de Marcos S.: Reagentless fluorescent biosensors based on proteins for continuous systems, Anal Biol Chem (2012) 402:3039-3054.
  • [7] Vo-Dinh T., Cullum B.: Biosensors and biochips: advances in biological and medical diagnostics. Fresenius J Anal Chem (2000) 366: 540-551.
  • [8] Giuliana K., Taylor L.: Fluorescent protein biosensors: New tools for drug Discovery. TIBTECH March 1998(vol. 16) p: 135-140.
  • [9] Przybyt M., Bieransiak J.: Zastosowanie biosensorów do oznaczania mleczanów owocowych w sokach komercyjnych i koncentratach. Żywoność. Nauka. Technologia . Jakość, 2008, 5(60), 168-177.
  • [10] Roelse M., Ruijter N., Vrouwe E., Jangsma M.: A genetic microfluidic biosensor of G protein –coupled receptor activation- monitoring cytoplasmic [Ca+2] changes in human HEK293 cells. biosensors and bioelectronics 47 (2013) 436-444.
  • [11] Der B., Dettelbaum J.: Construction of reagentless glucose biosensor using molecular exciton luminescence. Analytical Biochemistry 375 (2008) 132-140.
  • [12] Xinxiu F., Hadong L., Guiyan Z., Xuexun F., Jingwei X., Wei J.: Blue fluorescent analogs as chemosensors for Zn2+: Bio-sensors and bioelectronics 42 (2013) 308-313.
  • [13] Nihar D., Anasuya Mishra, Krishnamoorthy G.: Akryl chain depend interaction of ligands with bovine serum albumin. Journal of Pharmaceutical and Biomedical Analysis 77 (2013) 55-62.
  • [14] Mehmeti I., Lortz S., Lenzen S.: The H2O2- sensitive HyPer protein targeted to endoplasmic reticulum as a mirror of the oxidizing thirddisulfide milieu, Free Radical Biology Medicine 53 (2012) 1451- 1458.
  • [15] Vessel A., Bobin G., Lemmetyimen H., Karp M., Tkachenko N.: Photochemical properties and sensor applications of modified yellow fluorescent protein (YFP) covalently attached to the surfaces of attached to the surfaces of attched optical fibers (EOFs). Anal Bioanal Chem (2012) 402: 1149-1158.
  • [16] VanEngelenburg S., Palmer A.: Fluorescent biosensors of protein function. Current Opinion In Chemical Biology (2008) 12: 60-65.
  • [17] Justino C., Rocha-Santos T., Duarte A.: Review of analytical figures of merit of sensors and biosensors in clinical applications, Trends in Analytical Chemistry, vol. 29, no 10, 2010.
  • [18] Fiberg E., Friberg E., Cunderlikova B., Pettersen E., Moan J.: pH effects on the cellular uptake of four photosensitizing drugs evaluated for use in photodynamic therapy of cancer, Cancer Letter, vol. 195, issue 1, p: 73-80, 2003.
  • [19] Silva F.R.D., Bellini M.H., Tristao V.R., Schor N., Vieira N.D., Courrd L.C.: Intrinsic fluorescence of protoporphyrin IX from blood samples can yield information on the growth of prostate tumors, Journal of fluorescence vol. 20, issue 6, page 1159-1165, 2010.
  • [20] Silva F.R.D., Nabeshima C.T., Bellini M.H., Schor N., Vieira N.D., Courral L.C.: Study of protoporphyrin IX elimination by Body excreta: A new noninvasive cancer diagnostic method?, Journal of fluorescence vol. 23, issue 1, p:” 131-135, 2013.
  • [21] De Lorimier R., Smith J., Dwyer M., Looger L., Sali K., Paavola C., Rizk S., Sadigov S., Conrad D., Loew L., Hellinga H.: Construction of biosensor family, Protein Science 2002, 11:2655-2675.
  • [22] Kłos-Witkowska A.: Biosensory i sensory fluorescencyjne. Pomiary Automatyka Kontrola, vol.60, nr 1, 2014.
  • [23] Kołwzan B.: Zastosowanie czujników biologicznych (biosensorów) do oceny jakości wody. Ochrona środowiska , vol. 31, 3-14, 2009.
  • [24] Peredes P., Parellada J., Fernandez V., Katasis I., Dominguez E.: Amperometric mediated carbon paste biosensor based on D-fructose dehydrogenese for determination of fructose in food analysis. Biosensor Bioelectron 12, pp.1233-1243, 1997.
  • [25] Morris M.C.: Fluorescent biosensors of intracellular targets from genetically encoded reporters to modular polypeptide probes, Cell Biochem Biophys 56, pp. 19-37, 2010.
  • [26] Ji Young Ch., Gun-Hee K., Zhiqian G., Hye L., K.M.K, Swamy K.M.K., Jaeyoung P., Seunghoon S., Injae S., Juyoung Y.: Highly selective radiometric fluorescent probe for Au3+ and its application to bioimaging, Biosensors and Bioelectronics 49, pp.438-441, 2013.
  • [27] Li I., Pham E., Truong K.: Protein biosensors based on the principle of fluorescence resonance energy transfer for monitoring cellular dynamics, Biotechnol Lett 28, pp.1971-1982, 2006.
  • [28] Murat Ates: A review study of (bio) sensor systems based on conducting polymers, Material Science and Engineering C 33, pp. 1853-1859, 2013.
  • [29] Radecki J., Radecka H., Cieśla J., Udek B.: Sensory chemiczne i biosensory w kontroli żywności zmodyfikowanej genetycznie. Biotechnologia 3 (74), pp. 67-78, 2006.
  • [30] Vo-Dihn T., Cullum B., Stokes D.: Nanosensors and biochips: frontiers in biomolecular diagnosic. Sensor and Actiuators B 74, pp. 2-11, 2001.
  • [31] Pickup J., Hussain F., Evans N., Rolinski O., Birch D.: Fluorescence – based glucose sensors, Biosensors and Bioelectronics 20, pp. 2555- 2565, 2005.
  • [32] VanEngelennburg S., Palmer A.: Fluorescent biosensors of protein function. Current Opinion in Chenical Biology 12, pp. 60-65, 2008.
  • [33] Sołtysiński T., Liebert A., Zawicki J., Maniewski R.: Optyczne metody obrazowania molekularnego. Acta Bio-Optica et Informatica Medica 4 vol.14, pp. 331-335, 2008.
  • [34] Cicchi R., Pavone F.: Non-Linear fluorescence lifetime imaging of biological tissue. Anal Bioanal Chem 400, pp.2687-2697, 2011.
  • [35] Synowiecki J., Wosołowska S.: Otrzymywanie i niektóre zastosowanie unieruchomionych enzymów. Biotechnologia 2 (77), pp. 7-26, 2007.
  • [36] Liao Z., Yang Z., Li Y., Wang B., Zhou Q.: A simple structure fluorescent chemosensors for high selectivity and sensivity of aluminium ions. Dyes and Pigments, pp.124- 128, 2013.
  • [37] Pawlaczyk I., Ziewiecki R., Czerchawski L., Krotkiewski H., Gancarz R.: Biosensory jako narzędzie wykorzystywane w badaniach krwi oraz wybranych białek krwi. Przegląd Lekarski 70/3, pp.131-134, 2013.
  • [38] Ozturk G., Alp S., Timor S.: A fluorescent biosensor based on acetylocholinesterase and 5-oxazolano derivative immobizlized in polyvinylchloride (PVC) matrix, Journal of Molecular Catalysis B: Enzymatic 47, pp. 111-116, 2007.
  • [39] Putzbach W., Ronkainen N.: Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors: A Review. Sensors 13, pp.4811-4840, 2013.
  • [40] Wolfbeis O.: Fiber-optic chemical sensors and biosensors. Anal Chem 76, pp.3269-3284, 2004.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-49d0589b-3904-4942-bf8a-af9cdba23da1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.