Identyfikatory
Warianty tytułu
Techniczna procedura wykorzystania woreczków z mchem i śniegu jako efektywnych monitorów magnetycznych do wstępnej oceny jakości powietrza
Języki publikacji
Abstrakty
Technologically advanced measuring stations are commonly used to monitor air quality, but their use is not always possible due to technical limitations. The primary aim of this study is to present a step-by-step technical research procedure as an effective method of collecting air contaminants and pollutants in locations unsuitable for standard monitoring stations. The moss bag technique was used, in which mosses were placed in a cylindrical fiberglass mesh and deployed in the field on a specially designed installation. Diamagnetic (plastic) containers were used to collect snow. This innovative approach involves both the scope of the research (natural monitors such as moss and snow, as well as seasonality) and the integration of magnetic and geochemical methods, pollution quantification parameters and meteorological data. Magnetic monitoring allows for a preliminary assessment of air quality in places that are difficult to access and/or located far from the main emission sources. A key advantage of using natural monitors (moss and snow) is the possibility of relatively long exposure times. In the case of studies focused on technogenic magnetic particles and potentially toxic elements, this approach allows for the collection of a larger amount of samples and reduces the need for frequent monitoring, which is necessary when using specialist equipment.
Do monitorowania jakości powietrza powszechnie stosuje się zaawansowane technologicznie stacje pomiarowe, jednak ich wykorzystanie nie zawsze jest możliwe ze względu na ograniczenia techniczne. Głównym celem niniejszego opracowania jest przedstawienie, krok po kroku, technicznej procedury badawczej jako skutecznej metody zbierania zanieczyszczeń powietrza w miejscach nieodpowiednich dla standardowych stacji monitorujących. Zastosowano technikę woreczków z mchem, w której mchy umieszczono w cylindrycznej siatce z włókna szklanego i rozmieszczono w terenie na specjalnie zaprojektowanej instalacji. Do zbierania śniegu wykorzystano diamagnetyczne (plastikowe) pojemniki. Innowacyjne podejście obejmuje, zarówno zakres badań (naturalne monitory, takie jak mech i śnieg; sezonowość), jak i integrację metod magnetycznych i geochemicznych, parametrów kwantyfikacji zanieczyszczeń oraz danych meteorologicznych. Monitoring magnetyczny pozwala na wstępną ocenę jakości powietrza w miejscach trudno dostępnych i/lub oddalonych od głównych źródeł emisji. Kluczową zaletą stosowania naturalnych monitorów (mchu i śniegu) jest możliwość stosunkowo długiego czasu ekspozycji. W przypadku badań skoncentrowanych na technogenicznych cząstkach magnetycznych i pierwiastkach potencjalnie toksycznych, takie podejście pozwala na pobranie większej liczby próbek i zmniejsza potrzebę częstego monitoringu, który jest konieczny przy użyciu specjalistycznego sprzętu.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
23--30
Opis fizyczny
Bibliogr. 43 poz., fot.
Twórcy
- Institute of Environmental Engineering, Polish Academy of Sciences, Zabrze, Poland
Bibliografia
- 1. Alloway, B.J., 1995. Heavy Metals in Soils. Blackie, Glasgow. DOI:10.1007/978-94-007-4470-7.
- 2. Błaś, M., Sobik, M. &, Twarowski, R. (2008). Changes of cloud water chemical composition in the Western Sudety Mountains, Poland, Atmospheric Research, 87(3–4), pp. 224-231. DOI:10.1016/j.atmosres.2007.11.004.
- 3. Bućko, M.S., Magiera, T., Johanson, B., Petrovský, E. & Pesonen, L.J. (2011). Identification of magnetic particulates in road dust accumulated on roadside snow using magnetic, geochemical and micro-morphological analyses, Environmental Pollution, 159, 5, pp. 1266–1276. DOI:10.1016/j.envpol.2011.01.030.
- 4. Calderon-Garciduenas, L., Gonzalez-Maciel, A., Mukherjee, P.S., Reynoso-Robles, R., Perez-Guille, B., Gayosso-Chavez, C., Torres-Jardon, R., Cross, J.V., Ahmed, I.A.M., Karloukovski, V.V. & Maher, B.A. (2019). Combustion- and friction-derived magnetic air pollution nanoparticles in human hearts, Environmental Research, 176, 108567. DOI:10.1016/j.envres.2019.108567.
- 5. Chaparro, M.A.E., Chaparro, M.A.E., Castaneda-Miranda, A.G., Marie, D.C., Gargiulo, J. D., Lavornia, J.M., Natal, M. & Böhnel, H.N. (2020). Fine air pollution particles trapped by street tree barks: in situ magnetic biomonitoring, Environmental Pollution, 226, 1, 115229. DOI:10.1016/j.envpol.2020.115229.
- 6. Chaparro, M.A.E. (2021). Airborne particle accumulation and loss in pollution-tolerant lichens and its magnetic quantification, Environmental Pollution, 288, 117807. DOI:10.1016/j.envpol.2021.117807.
- 7. Chaparro, M.A.E., Fernández, M., Chaparro, M.A.E. & Böhnel, H.N. (2022). Magnetic proxies of continental shelf sediments and their implication for the benthic zone and shrimp fishing activities, Continental Shelf Research, 248, 104845. DOI:10.1016/j.csr.2022.104845.
- 8. Cesa, M., Azzalini, G., De Toffol, V., Fontanive, M., Fumagalli, F., Nimis, P. L. & Riva, G. (2009). Moss bags as indicators of trace element contamination in Pre-alpine streams. Plant Biosystems, An International Journal Dealing with All Aspects of Plant Biology, 143, 1, pp. 173–180. DOI:10.1080/11263500802709798.
- 9. Chester, R. & Stoner, J. (1973). Pb in Particulates from the Lower Atmosphere of the Eastern Atlantic, Nature, 245, pp. 27–28. DOI:10.1038/245027b0.
- 10. de Oliveira, C.R., Do Nascimento Queiroz, C.S., Pinto da Luz, F.C., Porto, S.R. & Rath, S.S. (2016). Bee pollen as a bioindicator of environmental pesticide contamination, Chemosphere, 163, pp. 525–534. DOI:10.1016/j.chemosphere.2016.08.022.
- 11. Fabian, K., Reimann, C., McEnroe, S.A. & Willemoes-Wissing, B. (2011). Magnetic properties of terrestrial moss (Hylocomium splendens) along a north-south profile crossing the city of Oslo, Norway. Science of The Total Environment, 409, 11, pp. 2252–2260. DOI:10.1016/j.scitotenv.2011.02.018.
- 12. Giordano, S., Adamo, P. , Monaci, F., Pittao, E., Tretiach, M. & Bargagli, R. (2009). Bags with oven-dried moss for the active monitoring of airborne trace elements in urban areas, Environmental Pollution, 157, 10, pp. 2798–2805. DOI:10.1016/j.envpol.2009.04.020.
- 13. Harmens, H., Norris, D.A., Steinnes, E., Kubin, E., Piispanen, J., Alber, R., Aleksiayenak, Y., Blum, O., Coşkun, M., Dam, M., De Temmerman, L., Fernández, J.A., Frolova, M., Frontasyeva, M., González-Miqueo, L., Grodzińska, K., Jeran, Z., Korzekwa, S., Krmar, M., Kvietkus, S., Leblond, S., Liiv, S. H., Magnússon, B., Mankovská, R., Pesch, A., Rühling, J.M., Santamaria, W., Schröder, Z., Spiric, I., Suchara, L., Thöni, V., Urumov, L. Yurukova, L. & Zechmeister, H.G. (2010). Mosses as biomonitors of atmospheric heavy metal deposition: spatial patterns and temporal trends in Europe, Environmental Pollution, 158, 10, pp. 3144–56. DOI:10.1016/j.envpol.2010.06.039.
- 14. Hofman, J., Maher, B.A., Muxworthy, A.R., Wuyts, K., Castanheiro, A. & Samson, R. (2017). Biomagnetic Monitoring of Atmospheric Pollution: A Review of Magnetic Signatures from Biological Sensors, Environmental Science & Technology, 51, 12, pp. 6648–6664. DOI:10.1021/acs.est.7b00832.
- 15. Hulett, L.D., Weinberger, A.J., Northcutt, K.J. & Ferguson, M. (1980). Chemical species in fly ash from coal-burning power plant, Science, 210, pp. 1356–1358. DOI:10.1126/science.210.4476.1356.
- 16. Jordanova, D., Jordanova, N., Barrón, V., Petrov, P. (2018). The signs of past wildfires encoded in the magnetic properties of forest soils, Catena, 171, pp. 265–279. DOI:10.1016/j.catena.2018.07.030.
- 17. Jordanova, D., Petrov, P., Hoffmann, V., Gocht, T., Panaiotu, C., Tsacheva, T. & Jordanova, N. (2010). Magnetic signature of different vegetation species in polluted environment, Studia Geophysica et Geodaetica, 54, pp. 417–442. DOI:10.1007/s11200-010-0025-7.
- 18. Kłos, A., Ziembik, Z., Rajfur, M., Dołhańczuk-Śródka, A., Bochenek, Z., Bjerke, J.W., Tømmervik, H., Zagajewski, B., Ziółkowski, D., Jerz, D., Zielińska, M., Krems, P., Godyń, P., Marciniak, M. & Świsłowski, P. (2018). Using moss and lichens in biomonitoring of heavy-metal contamination of forest areas in southern and north-eastern Poland, Science of The Total Environment, 627, pp. 438–449. DOI:10.1016/j.scitotenv.2018.01.211.
- 19. Łyszczarz, S., Błońska, E. & Lasota, J. (2020). The application of the geo-accumulation index and geostatistical methods to the assessment of forest soil contamination with heavy metals in the Babia Góra National Park (Poland). Archives of Environmental Protection, 46, 3, pp. 69–79. DOI:10.24425/aep.2020.134537.
- 20. Maher, B. (2024). Ubiquitous magnetite, Nature Geoscience, 17, 7. DOI:10.1038/s41561-023-01352-7.
- 21. Magiera, T., Jabłońska, M., Strzyszcz, Z. & Rachwał, M. (2011). Morphological and mineralogical forms of technogenic magnetic particles in industrial dusts, Atmospheric Environment, 45, pp. 4281–4290. DOI:10.1016/j.atmosenv.2011.04.076.
- 22. Magiera, T., Kyzioł-Komosińska, J., Dzieniszewska, A., Wawer, M. & Żogała, B. (2020). Assessment of elements mobility in anthropogenic layer of historical wastes related to glass production in Izera Mountains (SW Poland), Science of The Total Environment, 735, 139526. DOI:10.1016/j.scitotenv.2020.139526.
- 23. Magiera, T., Żogała, B., Szuszkiewicz, M., Pierwoła, J. & Szuszkiewicz, M.M. (2019). Combination of different geophysical techniques for the location of historical waste in the Izery Mountains (SW Poland), Science of The Total Environment, pp. 226-238. DOI:10.1016/j.scitotenv.2019.05.180.
- 24. Markert, B.A., Breure, A.M. & Zechmeister, H.G. (2003). Chapter 1. Definitions, strategies and principles for bioindication/biomonitoring of the environment, Trace Metals and other Contaminants in the Environment, Elsevier, 6, pp. 3–39. DOI:10.1016/S0927-5215(03)80131-5.
- 25. Mazur, A. (2022). Three months of “Cumbre Vieja” – analysis of consequences of volcano eruption, Archives of Environmental Protection, 48, 3, pp. 99–108. DOI:10.24425/aep.2022.142694.
- 26. Michczyński, A., Szuszkiewicz, M.M., Gołuchowska, B. & Sikorski, J. (2022). Historical Record of Magnetic and Geochemical Signals in Mountain Peat Bogs: A Case Study of the Black Triangle Region (the Izery Mountains, SW Poland), Water, Air, & Soil Pollution, 233, 127. DOI:10.1007/s11270-022-05593-x.
- 27. Müller, G. (1969). Index of geoaccumulation in sediments of the Rhine river, Geojournal, 2, pp. 108–118.
- 28. Ojha, G., Appel, E., Wawer, M., Magiera, T. & Hu, S. (2016). Toward a Cost-Efficient Method for Monitoring of Traffic-Derived Pollutants with Quartz Sand Boxes, Water, Air, & Soil Pollution, 227, 173. DOI:10.1007/s11270-016-2858-3.
- 29. Petrovský, E., Alcalá, M.D., Criado, J.M., Grygar, T., Kapička, A. & Šubrt, J. (2000). Magnetic properties of magnetite prepared by ball-milling of hematite with iron, Journal of Magnetism and Magnetic Materials, 210, 1-3, pp. 257–273. DOI: 10.1016/S0304-8853(99)00624-1.
- 30. Rachwał, M., Penkała, M., Rogula-Kozłowska, W., Wawer-Liszka, M., Łukaszek-Chmielewska, A. & Rakowska, J. (2024). Influence of road surface type on the magnetic susceptibility and elemental composition of road dust, Archives of Environmental Protection, 50, 4, pp. 135–146. DOI:10.24425/aep.2024.152903.
- 31. Rachwał, M., Rybak, J. & Rogula-Kozłowska, W. (2018). Magnetic susceptibility of spider webs as a proxy of airborne metal pollution, Environmental Pollution, 234, pp. 543–551. DOI:10.1016/j.envpol.2017.11.088.
- 32. Salo, H., Berisha, A.-K. & Mäkinen, J. (2016). Seasonal comparison of moss bag technique against vertical snow samples for monitoring atmospheric pollution, Journal of Environmental Sciences, 41, pp. 128–137. DOI:10.1016/j.jes.2015.04.021.
- 33. Salo, H. & Mäkinen, J. (2014). Magnetic biomonitoring by moss bags for industry-derived air pollution in SW Finland, Atmospheric Environment, 97, 19–27. DOI:10.1016/j. atmosenv.2014.08.003.
- 34. Salo, H. & Mäkinen, J. (2019). Comparison of traditional moss bags and synthetic fabric bags in magnetic monitoring of urban air pollution, Ecological Indicators, 104, pp. 559–566. DOI:10.1016/j.ecolind.2019.05.033.
- 35. Sambolino, A., Iniguez, E., Herrera, I., Kaufmann, Ana Dinis, M. & Cordeiro, N. (2023). Microplastic ingestion and plastic additive detection in pelagic squid and fish: Implications for bioindicators and plastic tracers in open oceanic food webs, Science of The Total Environment, 894, 164952. DOI:10.1016/j.scitotenv.2023.164952.
- 36. Szuszkiewicz, M.M., Łukasik, A., Petrovský, E., Grison, H., Błońska, E., Lasota, J. & Szuszkiewicz, M. (2023). Magneto-chemical characterisation of Saharan dust deposited on snow in Poland, Environmental Research, 216, 2, 114605. DOI: 10.1016/j.envres.2022.114605.
- 37. Szuszkiewicz, M.M, Gołuchowska, B. & Szuszkiewicz, M. (in press). Magnetic and geochemical biomonitoring: Black or White Triangle of Europe?
- 38. Tomlinson, D.L., Wilson, J.G., Harris, C.R. & Jeffry, D.W. (1980). Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index, Helgolander Meeresunters, 33, pp. 566–575. DOI:10.1007/BF02414780.
- 39. Varela, Z., Boquete, M.T., Fernández, J.A., Martínez-Abaigar, J., Núñez-Olivera, E. & Aboal, J.R. (2023). Mythbusters: Unravelling the pollutant uptake processes in mosses for air quality biomonitoring, Ecological Indicators, 148, 110095. DOI:10.1016/j.ecolind.2023.110095.
- 40. Wawer, M., Magiera, T., Jabłońska, M., Kowalska J. & Rachwał, M. (2020). Geochemical characteristics of solid particles deposited on experimental plots established for traffic pollution monitoring in different countries, Chemosphere, 260, 127575. DOI:10.1016/j.chemosphere.2020.127575.
- 41. Wawer, M., Magiera, T., Ojha, G., Appel, E., Kusza, G., Hu, S. & Basavaiah, N. (2015). Traffic-Related Pollutants in Roadside Soils of Different Countries in Europe and Asia, Water, Air, & Soil Pollution, 226, 216. DOI:10.1007/s11270-015-2483-6.
- 42. Winkler, A., Caricchi, C., Guidotti, M., Owczarek, M., Macrì, P., Nazzari, M., Amoroso, A., Di Giosa & A., Listrani, S. (2019). Combined magnetic, chemical and morphoscopic analyses on lichens from a complex anthropic context in Rome, Italy, Science of The Total Environment, 690, pp. 1355–1368. DOI:10.1016/j.scitotenv.2019.06.526.
- 43. Zawadzki, J., Szuszkiewicz, M., Fabijańczyk, P. & Magiera, T. (2016). Geostatistical discrimination between different sources of soil pollutants using a magneto-geochemical data set, Chemosphere 164, 668–676. DOI:10.1016/j.chemosphere.2016.08.145.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-49caf237-e8e4-41eb-8298-d5f5fa287031
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.