PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enhanced wear and corrosion performance of stainless steel 316L with addition of different weight percentages of GNP

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present study reports on the significant improvement in the wear and corrosion resistance of SS316L by adding Graphene nanoplatelets (GNP) of varying wt.% (0.25, 0.5, and 0.75), composites which were prepared by the pressureless sintering technique. The GNP addition can significantly improve the wear and corrosion resistance of SS316L. The wear and corrosion rates for the 0.5 wt.% GNP composite were reduced by 43% and 98%, respectively. The corrosion morphology showed that pitting corrosion was reduced by reinforcing 316L with 0.5 wt.% GNP. Moreover, the intergranular sites were more vulnerable to the corrosion medium when GNP was used at 0.75 wt.%. The worn surface morphology revealed that the tribofilm reduces the coefficient of friction and wear rate due to the lubricating nature of GNP. The presence of GNP was confirmed by Raman spectroscopy in terms of the tribofilm.
Rocznik
Strony
25--32
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
  • JNTUK Kakinada, Department Mechanical Engineering, University College of Engineering Kakinada (A), 533003, Andhra Pradesh, India
  • JNTUK Kakinada, Department Mechanical Engineering, University College of Engineering Kakinada (A), 533003, Andhra Pradesh, India
Bibliografia
  • 1. Wongpanya P., Pintitraratibodee N., Thumanu K., Euaruksakul C., Improvement of corrosion resistance and biocompatibility of 316L stainless steel for joint replacement application by Ti-doped and Ti-interlayered DLC films, Surf. Coatings Technol. 2021, 425, 127734, DOI: 10.1016/j.surfcoat.2021.127734.
  • 2. Sinha R.K., Nagpal Y., Sharma R., Kumar N., Investigation on corrosion characteristics of SS316L by thermal spray coating technique using Ni-80Cr alloy, J. Phys. Conf. Ser. 2022, 2178(1), DOI: 10.1088/1742-6596/2178/1/012032.
  • 3. Al-Mangour B., Mongrain R., Irissou E., Yue S., Improving the strength and corrosion resistance of 316L stainless steel for biomedical applications using cold spray, Surf. Coatings Technol. 2013, 216, 297-307, DOI: 10.1016/j.surfcoat.2012.11.061.
  • 4. Kuforiji C., Nganbe M., Powder metallurgy fabrication, characterization and wear assessment of SS316L-Al2O3 composites, Tribol. Int. 2019, 130, 339-351, DOI: 10.1016 /j.triboint. 2018.10.002.
  • 5. Padmavathi C., Upadhyaya A., Agrawal D., Corrosion behawior of microwave-sintered austenitic stainless steel composites, Scr. Mater. 2007, 57(7), 651-654, DOI: 10.1016/j.scriptamat.2007.06.007.
  • 6. Mahathanabodee S., Palathai T., Raadnui S., Tongsri R., Sombatsompop N., Dry sliding wear behavior of SS316L composites containing h-BN and MoS2 solid lubricants, Wear [Internet] 2014, 316(1-2), 37-48, DOI: 10.1016/j.wear.2014.04.015.
  • 7. Kumar S.S., Sandeep E.S., Chandrasekhar S.B., Karak S.K., Development of nano-oxide dispersed 304L steels by mechanical milling and conventional sintering, Mater. Res. 2016, 19(1), 175-182, DOI: 10.1590/1980-5373-mr-2015-0593.
  • 8. Zou Y., Tan C., Qiu Z., Ma W., Kuang M., Zeng D., Additively manufactured SiC-reinforced stainless steel with excellent strength and wear resistance, Addit. Manuf. 2021, 41, March, 101971, DOI: 10.1016/j.addma.2021.101971.
  • 9. Balaji S., Vijay P., Upadhyaya A., Effect of sintering temperaturę on the electrochemical, hardness, and tribological properties of aluminide-reinforced austenitic stainless steel, Scr. Mater. 2007, 56(12), 1063-1066, DOI: 10.1016/j.scriptamat.2007.02.033.
  • 10. Zengin E., Ahlatci H., Zengin H., Investigation of microstructure, tribological and corrosion properties of AISI 316 L stainless steel matrix composites reinforced by carbon nanotubes, Mater. Today Commun. 2021, 29, December, 102758, DOI: 10.1016/j.mtcomm.2021.102758.
  • 11. Radhamani A.V., Lau H.C., Kamaraj M., Ramakrishna S., Structural, mechanical and tribological investigations of CNT-316 stainless steel nanocomposites processed via spark plasma sintering, Tribol. Int. 2020, 152, July, 106524, DOI: 10.1016/j.triboint.2020.106524
  • 12. Kalyanamanohar V., Gopalakrishna A., Effect of SiC coated GNP on microstructure and mechanical properties of pressureless sintered SS316L composites, i-manager’s, J. Mech. Eng. 2022, 12(3), 1, DOI: 10.26634/jme.12.3.18589.
  • 13. Veeramallu K., Gopala Krishna A., Friction stir processed Al 7075 matrix composites with addition of SiC coated Graphene nanoplatelets, Mater. Today Proc. 2022, 56, 1594-9, DOI: 10.1016/j.matpr.2022.02.650.
  • 14. Mandal A., Tiwari J.K., AlMangour B., Sathish N., Kumar S., Kamaraj M., et al., Tribological behavior of graphenereinforced 316L stainless-steel composite prepared via selective laser melting, Tribol. Int. 2020, 151, May, 106525, DOI: 10.1016/j.triboint.2020.106525.
  • 15. Kandala S.R., Balani K., Upadhyaya A., Mechanical and electrochemical characterization of supersolidus sintered austenitic stainless steel (316 L), High Temp. Mater. Process. 2019, 38(2019), 792-805, DOI: 10.1515/htmp-2019-0032.
  • 16. Khanna V., Kumar V., Bansal S.A., Prakash C., Ubaidullah M., Shaikh S.F., et al., Fabrication of efficient aluminium/ graphene nanosheets (Al-GNP) composite by powder metallurgy for strength applications, J. Mater. Res. Technol. 2023, 22, 3402-3412, DOI: 10.1016/ j.jmrt.2022.12.161.
  • 17. Hooshmand Zaferani S., Ghomashchi R., Vashaee D., Thermoelectric, magnetic, and mechanical characteristics of antiferromagnetic manganese telluride reinforced with Graphene nanoplates, Adv. Eng. Mater. 2021, 23(2), 1-9.
  • 18. Leng J-feng, Zhou Q-bo, Li Z-zhi, Dong Y-fan, Xia C-peng, Effect of graphene on microstructure and properties of Gr/CuCr10 composites, Trans. Nonferrous Met. Soc. China (English Ed.) 2022, 32(4), 1217-1225, DOI: 10.1002/ adem.202000816.
  • 19. Kumar N., Lokesh K.S., Kannantha V., Pai R., Hebbale A.M., Development and experimental investigation of mechanical properties of graphene-based aluminum 6061 alloys, Mater. Today Proc. 2021, 46(7), 2421-2424, DOI: 10.1016/j.matpr. 2021.01.303.
  • 20. Mandal A., Tiwari J.K., AlMangour B., Das A., Sathish N., Sharma R.K. et al., Microstructural and thermal expansion
  • behaviour of graphene reinforced 316L stainless steel matrix composite prepared via powder bed fusion additive manufacturing, Results Mater. 2021, 11, 100200, DOI: 10.1016/j.rinma.2021.100200.
  • 21. Ouyang W., Xu Z., Jia S., Zhang M., Ye Y., Jiao J. et al., Multilayer-graphene reinforced 316L matrix composites preparation by laser deposited additive manufacturing: Microstructure and mechanical property analysis, Mater. Res. Express. 2019, July, 12, 6(9), DOI: 10.1088/2053-1591/ab2f2e.
  • 22. Chu K., Jia C., Enhanced strength in bulk graphene-copper composites, Phys. Status Solidi. Appl. Mater. Sci. 2014, 211(1), 184-190, DOI: 10.1002/pssa.201330051.
  • 23. Cunha A., Ferreira R., Trindade B., Silva F.S., Carvalho O., Production of a laser textured 316L stainless steel reinforced with CuCoBe + diamond composites by hot pressing: Influence of diamond particle size on the hardness and tribological behaviour, Tribol. Int. 2020, 146, 106056, DOI: 10.1016/j.triboint.2019.106056.
  • 24. Veeresh Nayak C., Ramesh M., Desai V., Kumar S.S., Fabrication of stainless steel based composite by metal injection moulding, Mater. Today Proc. 2018, 5(2), 6805-6814, DOI: 10. 1016/j.matpr.2017.11.340.
  • 25. Kumar V., Joshi P., Dhakar S., Analysis of the effect of sensitization on austenitic stainless steel 304L welded by
  • GTAW process, HCTL Open Int. J. Technol. Innov. Res. 2015, 14, August, 978-979.
  • 26. Yao Y., Miao S., Liu S., Ma L.P., Sun H., Wang S., Synthesis, characterization, and adsorption properties of magnetic Fe3O4@graphene nanocomposite, Chem. Eng. J. 2012, 184, 326-332, DOI: 10.1016/j.cej.2011.12.017.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-49c8d7e8-9a6a-4a1b-89f0-cde4164d452f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.