PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analityka spektrochemiczna - emisyjna spektrometria atomów i cząsteczek dwuatomowych wybranych plazm bezelektrodowych

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Spectrochemical analytics - emission spectrometry of atoms and diatomic molecules of selected electrodeless plasmas
Języki publikacji
PL
Abstrakty
PL
Omówiono zastosowanie spektrometrii emisyjnej plazm bezelektrodowych w analizie składu pierwiastkowego różnorodnych materiałów, w analizie oscylacyjno-rotacyjnej cząsteczek oraz do wyznaczania parametrów fizykochemicznych plazmy. W pierwiastkowej analizie spektrochemicznej wykorzystano plazmę indukcyjnie sprzężoną (ICP). Badania obejmowały testowanie różnych metod wprowadzania próbek do plazmy, analizę efektów matrycowych i interferencji spektralnych w powiązaniu z diagnostyką spektroskopową wyładowania oraz opracowanie nowych, przyjaznych środowisku metod przygotowania próbek do analiz wielopierwiastkowych. Określono efektywność różnych procedur mineralizacji próbek oraz zaproponowano alternatywne nowe procedury przeprowadzenia analitu do roztworu oparte na ekstrakcji wspomaganej energią mikrofalową lub ultradźwiękową. Przedstawiono możliwość izolowania analitów od matrycy, wzbogacania analitów, obniżenia granic wykrywalności, redukcji efektów matrycowych oraz uproszczenia procedury kalibracyjnej dzięki wykorzystaniu ekstrakcji w punkcie zmętnienia. Określono wpływ różnych matryc na parametry charakteryzujące plazmę, takie jak temperatura, gęstość elektronowa, stopień jonizacji oraz zależność efektów matrycowych od parametrów fizycznych stosowanych linii analitycznych. Przedstawiono wykorzystanie bezelektrodowej plazmy chemiluminescencyjnej w badaniach struktury widm cząsteczek dwuatomowych i wyznaczaniu ich podstawowych stałych molekularnych oraz rolę i zastosowanie w analizie pierwiastkowej i diagnostyce plazmy. Stosując głównie metodę wysokorozdzielczej spektrometrii fourierowskiej, analizowano widma GeBr, PbH, PbD, Pb2 i PbLi wzbudzone w niskociśnieniowym wyładowaniu mikrofalowym oraz w reakcji chemiluminescencji połączonej z wyładowaniem mikrofalowym. Wyznaczono po raz pierwszy stałe molekularne wzbudzonych stanów elektronowych tych cząsteczek. Zaproponowano wykorzystanie widm ciężkich molekuł, takich jak Bi2 i BiN do określenia równowagi termodynamicznej w układach emitujących promieniowanie.
EN
The study demonstrates application of emission spectrometry of electrodeless plasma in analysis of elemental composition of various materials and in vibrational-rotational analysis of diatomic molecules as well as in determination of physical plasma parameters. Inductively coupled argon plasma was utilized for elemental spectrochemical analysis. Various methods of introduction of samples into the plasma, matrix effects and spectral interferences were studied in relation with physical parameters of the analytical lines and plasma characteristics. New, environmen- tal friendly methods of sample preparation for multi-elemental spectrochemical analysis have been devel- oped and verified. Various sample digestion methods were compared in terms of their effectiveness and altemative pro- cedures based on microwave or ultrasound assisted extraction have been proposed and validated. Possibil- ities of analyte isolation from complex matrix and its enrichment as well as lowering of detection limits and simplification of the calibration step were achieved by the cloud point extraction. Effects of various matrices on linę intensities and plasma parameters such as electron number density, excitation and ioniza- tion temperatures have been presented and discussed. lnvestigation of structure and determination of spectroscopic constants of diatomic molecules as well as their role and application in elemental analysis and plasma diagnostics were presented. Spectra of GeBr, PbH, PbD, Pb2 and PbLi were excited in plasma generated by microwave or chemiluminescence combined with microwave discharges. The analyses were mainly performed by the high resolution Fourier transform spectrometry. Rotational and vibrational analyses of new electronic transitions were carried out and molecular spectroscopic constants of excited electronic States have been determined for the first time. Spectra of heavy molecules such as Bi2 or BiN were proposed for plasma diagnostics and estimation of thermodynamic eąuilibrium in objects emitting radiation.
Rocznik
Strony
178--178
Opis fizyczny
Bibliogr. 257 poz., tab., rys.
Twórcy
  • Zakład Chemii Analitycznej Wydziału Chemicznego Politechniki Wrocławskiej, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław
Bibliografia
  • [1] Friedman A., Plasma chemistry. Cambridge University Press, New York 2008.
  • [2] Fujimoto T., Plasma spectroscopy. Oxford University Press, New York 2004.
  • [3] Muraoka K., Maeda M., Laser-aided diagnostics of plasmas and gases. Institute of Physics Publishing, Bristol 2001.
  • [4] Kolos R., Daleka i bliższa chemia międzygwiazdowa. Kosmos, 55 (2006), 355-364.
  • [5] Tennyson J., Astronomical spectroscopy. Imperial College Press, London 2005.
  • [6] Borkowska-Bumecka I, Żymicki W., Setzer K.D., Fink E.H., Rotational and vibrational tempera-tures of electronically excited BiN radicals in a chemiluminescent flame. J. Quant. Spectrosc. Radiat. Transfer, 109 (2008), 1599-1606.
  • [7] Fantz U., Basics of plasma spectroscopy. Plasma Sources Sci. Technol., 15 (2006), S137-S147.
  • [8] Kunisz D., Fizyczne podstawy emisyjnej analizy widmowej. PWN, Warszawa 1973.
  • [9] van der Mullen J.A.M., Excitation eąuilibria in plasmas; a classification. Phys. Rep., 191 (1990), 109-220.
  • [10] van der Mullen J.A.M., Broks, B. Disturbed bilateral relations: a guide for plasma characterization and global models. J. Phys.: Conf. S., 44 (2006), 40-52.
  • [11] Wujec T., Spektroskopowa diagnostyka plazmy łukowej i wyładowania barierowego oraz pomiar stałych atomowych. Wydawnictwo Uniwersytetu Opolskiego, Opole 2005.
  • [12] Irwin A.W., Polynominal partition function approximations of 344 atomic and molecular species. Astrophys. J. Suppl. S„ 45 (1981), 621-633.
  • [13] Colonna G., Capitelli M., A few level approach for the electronic partition function of atomic systems. Spectrochim. Acta, B64 (2009), 863-873.
  • [14] Griem H.R., Principles of plasma spectroscopy. Cambridge University Press, Cambridge 1997.
  • [15] Fridman A., Chirokov A., Gutsol A., Non-thermal atmospheric pressure discharges. J. Phys. D: Appl. Phys., 38 (2005), R1-R24.
  • [16] Ndiaye A.A., Lago V., Optical spectroscopy investigation of N2-CH4 plasma jets simulating Titan atmospheric entry conditions. J. Phys. D: Appl. Phys., 20 (2011), 015015 (12 pp).
  • [17] Cardona O., Atomic line broadening by thermal energy fluctuations in stellar atmospheres and plasma diagnostics. Astrophysics, 54 (2011), 75-86.
  • [18] Descoeudres A., Hollenstein Ch., Demellayer R., Walder G., Optical emission spectroscopy of electrical discharge machiningplasma. J. Phys. D: Appl. Phys., 37 (2004), 875-882.
  • [19] Ancona A., Sibillano T., Lugara P.M., Optical plasma spectroscopy as a tool for monitoring laser welding processes. Journal of Achievements in Materials and Manufacturing Eneineerine. 31 (2008), 402-407.
  • [20] Miclea M., Kunze K., Heitmann U., Florek S., Franzke J., Niemax K., Diagnostics and application of the microhollow cathode discharge as an analytical plasma. Phys. D: Appl. Phys., 38 (2009), 1709-1715.
  • [21] Serapinas P., Šalkauskas J., Ežerinskis Ž., Acus A., Local thermodynamic eąuilibrium modeling of ionization of impurities in argon inductively coupled plasma. Spectrochim. Acta, B65 (2010), 15-23.
  • [22] Borkowska-Burnecka J., Żyrnicki W., Leśniewicz A., Comparison of pneumatic and ultrasonic nebulizations in inductively coupled plasma atomic emission spectrometry - matrix effects and plasma parameters. Spectrochim. Acta, B61 (2006), 579-587.
  • [23] Tendero C., Tixier C., Tristant P., Desmaison J., Leprince P., Atmospheric pressure plasmas: A review. Spectrochim. Acta, B61 (2006), 2-30.
  • [24] Stryczewska H.D., Technologie plazmowe w energetyce i inżynierii środowiska. Wydawnictwo Politechniki Lubelskiej, Lublin 2009.
  • [25] Ko Y., Yang G., Chang D.P.Y., Kennedy I.M., Microwave plasma conversion of volatile organic compounds. J. Air Waste Manage., 53 (2003), 580-585.
  • [26] Shigeru Ono, Shinriki Teii, Yuta Suzuki, Takuya Suganuma, Effect of gas composition on metal surface cleaning using atmospheric pressure microwave plasma. Thin Solid Films, 518 (2009), 981-986.
  • [27] Zaksas N.P., Shelpakova I.R., Gerasimov V.G., Determination of trace elements in different powdered samples by atomic emission spectrometry with spectral excitation in a two-jet arc plasmatron. J. Anal. Chem., 59 (2004), 222-227.
  • [28] Amberger M.A., Barth P., Főrster O., Broekaert J.A.C., Direct multielement determination of trace elements in boron Carbide powders by direct current arc atomic emission spectrometry using a CCD spectrometer. Microchim. Acta, 267 (2011), 261-267.
  • [29] Yugeswaran S., Selvarajan V., Excitation temperature and electron number density behavior of atmospheric pressure D.C. argon plasma jet during spheroidization of nickel. Vacuum, 83 (2009), 841-847.
  • [30] Glow discharge spectroscopies, Marcus R.K. (Ed.), Plenum Press, New York 1993.
  • [31] Alberts D., Guillot L.T.P., Pereiro R., Sanz-Medel A., Belenguer P., Ganciu M., Improvement of the analytical performance in RF-GD-OES for non-conductive materials by means of thin conductive layer deposition and the presence of a magnetic field. J. Anal. At. Spectrom., 25 (2010), 1247-1252.
  • [32] Martin A., Menendez A., Pereiro R., Bordel N., Sanz-Medel A., Modifying argon glow discharges by hydrogen addition: effects on analytical characteristics of optical emission and mass spectrometry detection modes. Anal. Bioanal. Chem., 388 (2007), 1573-1582.
  • [33] Lobo L., Femandez B., Pereiro R., Bordel N., Sanz-Medel A., Nitrogen effects in multi-matrix calibrations by radiofrequency glow discharge - optical emission spectrometry. Anal. Bioanal. Chem., 389 (2007), 743-752.
  • [34] Winchester M.R., Payling R., Radio-frequency glow discharge spectrometry: A critical review. Spectrochim. Acta, B59 (2004), 607-666.
  • [35] Gencheva V., Depth profile analysis of CVD -tungsten oxide thin films in hollow cathode discharge. Mat. Let., 60 (2006), 535-537.
  • [36] Brewer T.M., Fernandez B., Marcus R.K., Determination of phosphorus and carbon in phosphorylated deoxynucleotides via particle beam/hollow cathode glow discharge optical emission spectroscopy (PB/HC-OES). J. Anal. At. Spectrom., 20 (2005), 924-931.
  • [37] Borkowska-Burnecka J., Żyrnicki W., Emission characteristics of the d.c., 100 kHz and 13.5 MHz hollow cathode discharges. Spectrosc. Lett., 30 (1997), 701-716.
  • [38] Borkowska-Burnecka J., Żyrnicki W., Fluorine determination and matrix effects in dc and hf hollow cathode discharges. Spectrosc. Lett., 22 (1989), 1065-1078.
  • [39] Borkowska-Burnecka J., Żyrnicki W., Study of the vaporization and excitation processes in a hollow cathode discharge. Spectrosc. Lett., 26 (1993), 137-151.
  • [40] Borkowska-Burnecka J., Żyrnicki W., Matrix effects and excitation processes of indium monohalides and atomie indium in hollow cathode discharges. Chem. Anal. (Warsaw), 40 (1995), 21-31.
  • [41] Bengtson A., The impact of molecular emission in compositional depth profiling using glow discharge-optical emission spectroscopy. Spectrochim. Acta, B63 (2008), 917-928.
  • [42] Aragon C., Aguilera J.A., Characterization of laser induced plasmas by optical emission spectroscopy: A review of experiments and methods. Spectrochim. Acta, B63 (2008), 893-916.
  • [43] Ayed Nassef O., Elsayed-Ali H.E., Spark discharge assisted laser induced breakdown spectroscopy. Spectrochim. Acta, B60 (2005), 1564—1572.
  • [44] Cremers D.A., Chinni R.C., Laser-Induced Breakdown Spectroscopy - Capabilities and Limitations. Appl. Spectrosc. Rev., 44 (2009), 457-506.
  • [45] Russo R.E., Suen T.W., Bol’shakov A.A., Yoo J., Sorkhabi O., Mao X., Gonzalez J., Oropeza D., Zorba V., Laser plasma spectrochemistry. J. Anal. At. Spectrom., 26 (2011), 1596-1603.
  • [46] Rankovic D., Kuzmanovic M., Savovic J., Pavlovic M.S., Stoiljkovic M., Momcilovic M., The effect of potassium addition on plasma parameters in argon dc plasma arc. J. Phys. D: Appl. Phys., 43 (2010), 335202 8pp.
  • [47] Schroeder T.S., Mahon A.R., Conver T.S., Hahn T., Ramsay K., Ambrose T., Ringwald S.C., Johnson G., McCurdy D.L., The characterization of an electrothermal vaporization-direct current plasma atomic emission spectrometer for the determination of boron, cadmium, copper, iron, and lead. Spectrosc. Lett., 37 (2004), 175-190.
  • [48] Ghatass Z.F., Roston G.D., Spectroscopic diagnostics of six electrode plasma arc as an excitation source for spectrochemical analysis. Spectral Line Shapes AIP Conf. Proc., 15 (2008), 9-11.
  • [49] Webb M.R., Andrade F.J., Hieftje G.M., Compact glow discharge for the elemental analysis of aqueous samples. Anal. Chem., 79 (2007), 7899-7905.
  • [50] Webb M.R., Andrade F.J., Hieftje G.M., High, Throughput elemental analysis of small aqueous samples by emission spectrometry with a compact, atmospheric-pressure solution-cathode glow discharge. Anal. Chem., 79 (2007), 7807-7812.
  • [51] Jankowski K.J., Reszke E., Microwave induced plasma analytical spectrometry. RSC Analytical Spectroscopy Monographs No. 12, 2011.
  • [52] Broekaert J.A.C., Siemens V., Recent trends in atomic spectrometry with microwave-induced plasmas. Spectrochim. Acta, B59 (2004), 1823-1839.
  • [53] Rosenkranz B., Bettmer J., Microwave-induced plasma - optical emission spectrometry -fundamental aspects and applications in metal speciation analysis. Trends Anal. Chem., 19 (2000), 138-156.
  • [54] Sua Y., Jin Z., Duana Y., Koby M., Majidi V., 01ivares J.A., Abeln S.P., Highly sensitive beryllium detection with microwave plasma source atomic emission spectrometry. Anal. Chim. Acta, 422 (2000), 209-216.
  • [55] Matusiewicz H., Ślachciński M., Hidalgo M., Casals A., Evaluation of various nebulizers for use in microwave induced plasma optical emission spectrometry. J. Anal. At. Spectrom., 22 (2007), 1174-1178.
  • [56] Matusiewicz H., A novel sample introduction system for microwave-induced plasma optical emission spectrometry. Spectrochim. Acta, B57 (2002), 485-494.
  • [57] Matusiewicz H., Ślachciński M., Simultaneous determination of hydride forming (As, Bi, Ge, Sb, Se, Sn) and Hg and non-hydride forming (Ca, Fe, Mg, Mn, Zn) elements in sonicate slurries of analytical samples by microwave induced plasma optical emission spectrometry with dual-mode sample introduction system. Microchem. J., 86 (2007), 102-111.
  • [58] Matusiewicz H., Ślachciński M., Method development for simultaneous multi-element determination of hydride forming elements (As, Bi, Ge, Sb, Se, Sn) and Hg by microwave induced plasma optical emission spectrometry using integrated continuous-microflow ultrasonic nebulizer-hydride generator sample introduction system. Microchem. J., 95 (2010), 213-221.
  • [59] Matusiewicz H., Ślachciński M., Method development for simultaneous determination of transition (Au, Ag, Cd, Cu, Mn, Ni, Pb, Zn) and Noble (Pd, Pt, Rh) metal volatile species by microwave- -induced plasma spectrometry using ultrasonic micronebulizer dual capillary sample introduction system. Spectrosc. Lett., 43 (2010), 172-182.
  • [60] Kadenkin A., Broekaert J.A.C., Studies with a miniaturized microwave induced plasma for element specific detection in gas chromatographic separations of halogenated hydrocarbons. J. Anal. At. Spectrom., 26 (2011), 1481-1487.
  • [61] Campillo N., Viňas P., López-Garćia I., Aguinaga N., Hernandez-Córdoba M., Purge-and-trap capillary gas chromatography with atomic emission detection for volatile halogenated organic compounds determination in waters and beverages. J. Chromatogr. A, 1035 (2004), 1-8.
  • [62] Timmermans E.A.H., Jonkers I, Thomas I.A.J., Rodero A., Quintero M.C., Sola A., Gamero A., van der Muller J.A.M., The behavior of molecules in microwave-induced plasmas studied by optical emission spectroscopy. 1. Plasmas at atmospheric pressure. Spectrochim. Acta, B53 (1998), 1553-1566.
  • [63] Leis F., Bauer H.E., Prodan L., Niemax K., Investigations on laser ablation - microwave induced plasma -atomic emission spectrometry using polymer samples. Spectrochim. Acta, B56 (2001), 27-35.
  • [64] Tyburska A., Jankowski K., Preconcentration of selenium by living bacteria immobilized on silica for microwave induced plasma optical emission spectrometry with continuous powder introduction. Anal. Methods, 3 (2011), 659-663.
  • [65] Jankowski K., Jackowska A., Mrugalska M., Direct spectrometric determination of total fluorine in geological materials by continuous powder introduction into helium microwave induced plasma. J. Anal. At. Spectrom., 22 (2007), 386-391.
  • [66] Matusiewicz H., Ślachciński M., Simultaneous determination of hydride forming (As, Bi, Ge, Sb, Se, Sn) and Hg and non-hydride forming (Ca, Fe, Mg, Mn, Zn) elements in sonicate slurries of analytical samples by microwave induced plasma optical emission spectrometry with dual-mode sample introduction system. Microchem. J., 86 (2007), 102-111.
  • [67] Gregorio J., Alves L.L., Leroy O., Leprince P., Boisse-Laporte C., Microwave microplasma sources based on microstrip-like transmission lines. Eur. Phys. J., D60 (2010), 627-635.
  • [68] Kun-Joo Park, Kee-Hyun Kim, Weon-Mook Lee, Analysis of novel Helmholtz-inductively coupled plasma source and its application for nano-scale MOSFETs. Trans. Electr. Electron. Mater., 10 (2009), 35-39.
  • [69] Khan F.A., Zhou L., Ping A.T., Adesida I., Inductively coupled plasma reactive ion etching of AlxGal2xNfor application in laser facet formation. J. Vac. Sci. Technol., B 17 (1999), 2750-2754.
  • [70] Bernardi D., Colombo V., Ghedini E., Mentrelli A., Three-dimensional modeling of inductively coupled plasma torches. Pure Appl. Chem., 77 (2005), 359-372.
  • [71] Mei T., Djie H.S., Arokiaraj J., Sookdhis C., Understanding the inductively coupled argon plasma- -enhanced quantum well intermixing. J. Crystal Growth, 268 (2004), 384-388.
  • [72] Stapelmann K., Kylian O., Denis B., Rossi F., On the application of inductively coupled plasma discharges sustained in Ar/02/N2 ternary mixture for sterilization and decontamination of medical instruments. J. Phys. D: Appl. Phys., 41 (2008), 192005 (6 p).
  • [73] Inductively coupled plasma spectrometry and its applications. Second Edition. Hill S.J. (Ed.), Blackwell Publishing, Oxford 2007.
  • [74] Brenner I.B., Zander A.T., Axially and radially viewed inductively coupled plasmas - a critical review. Spectrochim. Acta, B55 (2000), 1195-1240.
  • [75] Tim B.-L. Tse, Wing-Tat Chan, Development and characterization of bottom-viewed inductively coupled plasma-atomic emission spectrometry. Spectrochim. Acta, B63 (2008), 861-867.
  • [76] Cui Z., Kodama K., Oyama El., Kitagawa K., Two-dimensional observation of excited atoms and ions and excitation temperature in inductively coupled plasma using newly developed four channel spectrovideo camera. J. Vis., 13 (2010), 89-96.
  • [77] Klostermeier A., Engelhard C., Evers S., Sperling M., Buscher W., New torch design for inductively coupled plasma optical emission spectrometry with minimised gas consumption. J. Anal. At. Spectrom., 20 (2005), 308-314.
  • [78] Todoll J.L., Mermet J.M., Sample introduction systems for the analysis of liąuid microsamples by ICP-AES and1CP-MS. Spectrochim. Acta, B61 (2006), 239-283.
  • [79] Aguirre M.A., Kovachev N., Almagro B„ Hidalgo M., Canals A., Compensation for matrix effects on ICP-OES by on-line calibration methods using a new multi-nebulizer based on Flow Blurring® technology. J. Anal. At. Spectrom., 25 (2010), 1724—1732.
  • [80] Chan G.C.-Y., Hieftje G.M., Using matrix effects as a probe for the study of the charge-transfer mechanism in inductively coupled plasma-atomic emission spectrometry. Spectrochim. Acta, B59 (2004), 163-183.
  • [81] Schiavo D., Trevizan L.C., Pereira-Filho E.R., Nóbrega J.A., Evaluation of the use of multiple lines for determination of metals in water by inductively coupled plasma optical emission spectrometry with axial viewing. Spectrochim. Acta, B64 (2009), 544-548.
  • [82] Lawn C.J., Distributions of instantaneous heat release by the cross-correlation of chemiluminescent emissions. Combust. Flame, 123 (2000), 227-240.
  • [83] Yoo S.W., Law C.K., Tse S.D., Chemiluminescent OH* and CH* flame structure and aerodynamic scaling of weakly buoyant, nearly spherical diffusion flames. Proc. Combust. I., 29 (2002), 1663— 1670.
  • [84] Sheaffer P.M., Zittel P.F., UV to near-IR CO emissions from O + C2H2 and O + C302 flames at low pressure and high temperature. J. Phys. Chem., A104 (2000), 10194-10201.
  • [85] Bateman R.M., Ellis C.G., Freeman D.J., Optimization of nitric oxide chemiluminescence operating conditions for measurement of plasma nitrite and nitrate. Clin. Chem., 48 (2002), 570-573.
  • [86] Jinjun Shi, Ruoxue Yan, Yongfa Zhu, Xinrong Zhang, Determination ofNH3 gas by combination of nanosized LaCoO3 converter with chemiluminescence detector. Talanta, 61 (2003), 157-164.
  • [87] Buzanovskii V.A., Bulaev A.A., Chemiluminescent gas analyzers. Chem. Petrol. Eng., 44 (2008), 514-518.
  • [88] Marley N.A., Gaffney J.S., A comparison of flame ionization and ozone chemiluminescence for the determination of atmospheric hydrocarbons. Atmos. Environ., 32 (1998), 1435-1444.
  • [89] Oldenbarg R.C., Gale J.L., Zare R.N., Chemiluminescent spectra of alkali-halogen reactions. J. Chem. Phys., 60 (1974), 4032-4042.
  • [90] Torres-Filho A., Pruett J.G., Populations of BaO States in the Ba + N2O chemiluminescent flame using the BaO C1Ʃ+ state as a probe. J. Chem. Phys., 70 (1979), 1427-1436.
  • [91] Li H., Skelton R., Focsa C., Pinchemel B., Bemath P.F., Fourier transform spectroscopy of chemiluminescence from the SrO A1Ʃ+-X1Ʃ+ transition. J. Mol. Spectrosc., 203 (2000), 188-195.
  • [92] West J.B., Chemiluminescence from mixtures of Ba +CO2 and Ba+CO. J. Chem. Phys., 66 (1977), 2139-2141.
  • [93] Khan A.U., Energy transfer from PO excited states to alkali metal atoms in the phosphorus chemiluminescence flame. Proc. Natl. Acad. Sci. USA 77 (1980), 6952-6955.
  • [94] Cheskis S., Mechanism of Sulfur Chemiluminescent emission in pulsed flames. Comb. Flame, 100(1995), 550-558.
  • [95] Krost K.J., Hodgeson J.A., Stevens, R.K., Flame chemiluminescence detection of nitrogen com- pounds. Anal. Chem., 45 (1973), 1800-1804.
  • [96] Francis P.S., Adcock J.L., Chemiluminescence methods for the determination of ofloxacin. Anal. Chim. Acta, 541 (2005), 3-12.
  • [97] Hasanpour F., Ensafi A.A., Khayamian T., Simultaneous chemiluminescence determination of amoxicillin and clavulanic acid using least sąuares support vector regression. Anal. Chim. Acta, 670 (2010), 44-50.
  • [98] Thurbide K.B., Aue W.A., Chemiluminescent emission spectra of lead, chromium, ruthenium, iron, manganese, rhenium, osmium and tungsten in the reactive flow detector. Spectrochim. Acta, B57 (2002), 843-852.
  • [99] Aue W. A., Singh H., Chemiluminescent photon yields measured in the flame photometric detector on chromatographic peaks containing sulfur, phosphorous, manganese, ruthenium, iron or selenium. Spectrochim. Acta, B56 (2001), 517-525.
  • [100] Giokas D.L., Vlessidis A.G., Tsogas G.Z., Evmiridis N.P., Nanoparticle-assisted chemiluminescence and its applications in analytical chemistry. Trends Anal. Chem., 29 (2010), 1113-1126.
  • [101] Yousheng Yea, Jianchi Sang, Hongbing Mac, Guanhong Tao, Determination of antimony in environment samples by gas phase chemiluminescence detection following flow injection hydride generation and cryotrapping. Talanta, 81 (2010), 1502-1507.
  • [102] Xinfeng Zhang, Qin Zhou, Yi Lva, Lan Wu, Xiandeng Hou, Ultrasensitive determination of cobalt in single hair by capillary electrophoresis using chemiluminescence detector. Microchem. J., 95 (2010), 80-84.
  • [103] Kim R., Sung Y.I., Lee J.S., Lim H.B., Chemiluminescence system for direct determination and mapping of ultra-trace metal impurities on a Silicon wafer. Analyst, 135 (2010), 2901-2906.
  • [104] Lei Nie, Jiuru Lu, Determination of trace aluminum (III) using a novel cerium (IV)-calcein chemiluminescence detection. Spectrochim. Acta, A71 (2008), 350-354.
  • [105] Murillo Pulgarin J.A., Garcta Bermejoa L.L., Carrasąuero A., Simultaneous determination of Cu(II), Ni(II) and Zn(II) by peroxyoxalate chemiluminescence using Partial Least Squares calibration. Analyst, 136 (2011), 304-308.
  • [106] Setzer K.D., Meinecke F., Fink E.H., Electronic States and spectra of BiS. J. Mol. Spectrosc., 258 (2009), 56-70.
  • [107] Setzer K.D., Laufs S., Fink E.H., Electronic States and spectra of BiTe. J. Mol. Spectrosc., 263 (2010), 1-10
  • [108] Setzer K.D., Breidohr R., Meinecke F., Fink E.H., Near-infrared electronic spectra of BiSe. J. Mol. Spectrosc., 258 (2009), 50-55.
  • [109] Cardona O., Atomic line broadening by thermal energy fluctuations in stellar atmospheres and plasma diagnostics. Astrophysics, 54 (2011), 75-86.
  • [110] Waite J.H., Grodent D., Mauk B.M., Majeedl T., Gladstone G.R., Boltond S.J., Clarkes J.T., Gerard J.C., Lewis W.S., Trafton L.M., Walkeri R.J., Ingersoll A.P., Connemey J.E.P., Multispectral observations of Jupiter aurora. Adv. Space Res., 26 (2000), 1453-1475.
  • [111] Chung H.-K., Lee R.W., Applications of NLTE population kinetics. High Energy Density Physics, 5 (2009), 1-14.
  • [112] Yang X., Lin M., Zou W., Zhang B., Spectroscopic constants of gallium monohalides: a DFT study. J. Mol. Struct. (Theochem), 668 (2004), 209-215.
  • [113] Singh V.B., Spectroscopic studies of diatomic gallium halides. J. Phys. Chem. Ref. Data, 34 (2005), 23-37.
  • [114] Bari M.A., Jia-Yong Z., Min C., Jing Z., Jie Z., Calculation of plasma characteristics of the sun. Chinese Phys., 15 (2006), 2578-2582.
  • [115] Bowyer S., Drake J.J., Vennes S., Extreme ultraviolet astronomy. Annu. Rev. Astron. Astrophys., 38 (2000), 231-88.
  • [116] Griem H.R., Plasma spectroscopy. McGraw-Hill Book Co., New York 1964.
  • [117] Tognoni E., Cristoforetti G., Legnaioli S., Palleschi V., Calibration-Free Laser-Induced Break- down Spectroscopy: State of the art. Spectrochim. Acta, B65 (2010), 1-14.
  • [118] Winchester M.R., Butler T.A., Turk G.C., Improving the high-performance inductively coupled plasma optical emission spectrometry methodology through exact matching. Anal. Chem., 82 (2010), 7675-7683.
  • [119] Grindlay G., Gras L., Mora J., de Loos-Vollebregt M.T.C., Carbon-related matrix effects in inductively coupled plasma atomic emission spektrometry. Spectrochim. Acta, B63 (2008), 234-243.
  • [120] Aguirre M.A., Kovachev N., Almagro B., Hidalgo M., Casals A., Compensation for matrix effects on ICP-OES by on-line calibration methods using a new multi-nebulizer based on Flow Blurring technology. J. Anal. At. Spectrom., 25 (2010), 1724-1732.
  • [121] Grotti M., Magi E., Leardi R,, Selection of internal standards in inductively coupled plasma atomic emission spectrometry by principal component analysis. J. Anal. At. Spectrom., 18 (2003), 274—281.
  • [122] Kola H., Peramaki P., The study of the selection of emission lines and plasma operating conditions for efficient internal standardization in inductively coupled plasma optical emission spectrometry. Spectrochim. Acta, B59 (2004), 231-242.
  • [123] Rabb S.A., Olesik J.W., Assessment of high precision, high accuracy inductively coupled plasma- -optical emission spectroscopy to obtain concentration uncertainties less than 0.2% with variable matrix concentrations. Spectrochim. Acta, B63 (2008), 244-256.
  • [124] Borkowska-Burnecka J., Szmigiel E., Żyrnicki W., Determination of major and trice elements in powdered milk by inductively coupled plasma atomie emission spectrometry. Chem. Anal. (War- saw), 41 (1996), 625-632.
  • [125] Borkowska-Burnecka J., Żyrnicki W., Miazga W., Evaluation of digestion procedures for the analysis of vegetables by the ICP emission spectrometry. Chem. Anal. (Warsaw), 45 (2000), 429 438.
  • [126] Borkowska-Burnecka J., Mazur D., Żyrnicki W., A study of REE concentrations in mosses from various locations by the ICP-AES method. Env. Prot. Eng., 29 (2003), 135-141.
  • [127] Borkowska-Burnecka J., Wisz J., Żyrnicki W., Applicability of ultrasonic leaching by diluted acids for determination of total metal contents in plant materials. Chem. Anal. (Warsaw), 48 (2003), 115-126.
  • [128] Zastosowanie ekstrakcji w procesie przygotowania próbek biologicznych do analizy śladowej metodami atomowej spektrometrii — pomiar koncentracji całkowitych i form specjacyjnych. Raport końcowy. Projekt badawczy 7 T09 A 007 20, Wrocław 2004.
  • [129] Borkowska-Burnecka J., Jankowiak U., Żyrnicki W., Wilk K., Effect of surfactant addition on ultrasonic leaching of trace elements from plant samples in inductively coupled plasma-atomic emission spectrometry. Spectrochim. Acta, B59 (2004), 585-590.
  • [130] Borkowska-Burnecka J., Jankowiak U., Żyrnicki W., Wilk K., Effect of surfactant addition on ultrasonic leaching of trace elements from plant samples, Colloquium Spectroscopicum Internationale XXXIII. Fernandez J.M.C., Perez J.M.V. (Ed.), Granada 2003, 75.
  • [131] Żyrnicki W., Borkowska-Burnecka J., Leśniewicz A., Metody ekstrakcyjne w analityce - problemy jakości, Jakość w chemii analitycznej 4, Warszawa, 27-28. 11. 2008
  • [132] Borkowska-Burnecka J., Szymczycha-Madeja A., Żyrnicki W., Determination of toxic and other trace elements in calcium-rich materials using cloud point extraction and inductively coupled plasma emission spectrometry. J. Haz. Mat., 182 (2010), 477-483.
  • [133] Borkowska-Burnecka J., Microwave assisted extraction for tracę element analysis of plant materials by ICP-AES. Fres. J. Anal. Chem., 368 (2000), 633-637.
  • [134] Borkowska-Burnecka J., Leśniewicz A., Żyrnicki W., Microwave assisted extraction with different leaching Solutions - application in multielemental analysis of plant samples by ICP-OES, European Symposium on Atomic Spectrometry, Weimar 2008.
  • [135] Borkowska-Burnecka J., Basińska A., Evaluation of various extraction procedures for the determination of trace elements in plant samples by the ICP-AES method, Colloquium Spectroscopicum Internationale, Book of abstracts, s. 223, Ankara 1999.
  • [136] Borkowska-Burnecka J., Jakubiel M., Żyrnicki W., Cloud point extraction as sample preparation procedurę prior to multielemental analysis by inductively coupled plasma-optical emission spectrometry. Chem. Anal. (Warsaw), 53 (2008), 335-346.
  • [137] Borkowska-Burnecka J., Szymczycha A., Żyrnicki W., Separation and simultaneous determination of trace elements in various samples using cloud point extraction and ICP-OES. European Symposium on Atomic Spectrometry, Weimar 2008.
  • [138] Pieczyńska J., Borkowska-Burnecka J., Biernat J., Grajeta H., Żyrnicki W., Żechalko-Czajkowska A., Boron content in daily meals for preschool children and school youth. Biol. Trace Elem. Res., 96 (2003), 1-8.
  • [139] Pieczyńska J., Borkowska-Burnecka J., Biernat J., Żyrnicki W., Wpływ boru na gospodarką mineralną szczurów doświadczalnych karmionych dietami o zróżnicowanym składzie. Żyw. Człow. Metab.,32 (2005), 1008-1017.
  • [140] Kowalczyk J., Cieślak K., Borkowska-Burnecka J., Metale ciężkie w sztucznym podłożu i pomidorach szklarniowych, [w:] Mikrozanieczyszczenia w środowisku człowieka. M. Janosz-Rajczyk (red.), Wyd. Politechniki Częstochowskiej, Konferencje, 48 (2002), 64-69; przedruk: Kowalczyk J., Cieślak K., Borkowska-Burnecka J., Metale ciężkie w sztucznym podłożu i pomidorach szklarniowych. Ekologia Praktyczna, 7 (2002), 30-32.
  • [141] Kowalczyk J., Borkowska-Burnecka J., Cieślak K., Heavy Metals Accumulation in Greenhouse Tomatoes, Proceedings of the Eight International ISHS Symposium on the Processing Tomato, 2002 Istanbul, Acta Horticulturae, 613 (2003), 57-60.
  • [142] Kowalczyk J., Borkowska-Burnecka J., Święcicka D., Likopen i metale ciężkie w pomidorach i przetworach pomidorowych, [w:] Mikrozanieczyszczenia w środowisku człowieka. M. Janosz- -Rajczyk (red.), Wyd. Politechniki Częstochowskiej, Konferencje, 51 (2003), 503-508.
  • [143] Luque-Garcia J.L., Luque de Castro M.D., Ultrasound: a power tool for leaching. Trends Anal. Chem., 22 (2003), 41-47.
  • [144] Luque de Castro M.D., Priego Capote F., Analytical applications of ultrasound. Techniques and instrumentation in analytical chemistry, Vol. 26, Elsevier, Amsterdam 2007.
  • [145] Popko M., Borkowska-Burnecka J., Generowanie lotnych połączeń kadmu, ołowiu i indu. Zastosowanie do analizy próbek o złożonej matrycy. Przemysł Chemiczny, 89 (2010), 524—528.
  • [146] Bermejo-Barrera P., Moreda-Pineiro A., Muniz-Naveiro O., Gomez-Femandez A.M.J., Bermejo-Barrera A., Optimization of a microwave-pseudo-digestion procedure by experimental designs for the determination of trace elements in seafood products by atomic absorption spectrometry. Spectrochim. Acta, B55 (2000), 1351-1371 .
  • [147] Minami EL, Honjyo T., Atsuya I., A new solid-liquid extraction sampling technique for direct determination of trace elements in biological materials by graphite furnace atomic absorption spectrometry. Spectrochim. Acta, B51 (1996), 211-220.
  • [148] Bermejo-Barrera P., Fernandez-Nocelo S., Moreda-Pineiro A., Bermejo-Barrera A., Usefulness of enzymatic hydrolysis procedures based on the use of pronase E as sample pretreatment for multi- element determination in biological materials. J. Anal. At. Spectrom., 14 (1999), 1893-1900.
  • [149] Minami H., Honjiyo T., Atsuya I., A new solid-liquid extraction sapling technique for direct determination of trace elements in biological materials by graphite furnace atomic absorption spectrometry. Spectrochim. Acta, B51 (1996), 211-220.
  • [150] Lima E.C., Barbosa Jr. F., Krug F.J., Silva M.M., Vale M.G.R., Comparison of ultrasound-assisted extraction, slurry sampling and microwave assisted digestion for cadmium, copper and lead determination in biological and sediment samples by electrothermal atomic absorption spectrometry. J. Anal. At. Spectrom., 15 (2000), 995-1000.
  • [151] Nascentes C.C., Kom M., Amida M.A.Z., A fast ultrasound-assisted extraction of Ca, Mg, Mn and Zn from vegetables. Microchem. J., 69 (2001), 37-43.
  • [152] Filgueiras A.V., Capelo J.L., Lavilla I., Bendicho C., Comparison of ultrasound-assisted extraction and microwave-assisted digestion for determination of magnesium, manganese and zinc in plant samples by flame atomic absorption spectrometry. Talanta, 53 (2000), 433-441.
  • [153] Ligang Chen, Daqian Song, Yuan Tian, Lan Ding, Aimin Yu, Hanqi Zhang, Application of on-line microwave sample-preparation techniąues. Trends Anal. Chem., 27 (2008), 151—159.
  • [154] Sparr Eskilsson C., Bjorklund E., Analytical-scale microwave-assisted extraction. J. Chromatogr., A 902 (2000), 227-250.
  • [155] Zhang Z., Xiong G., Lie G., He X., Sample pretreatment by microwave-assisted techniąues. Anal. Sci., 16 (2000), 221-224.
  • [156] Madej K., Microwave-assisted and cloud-point extraction in determination of drugs and other bioactive compounds. Tr. Anal. Chem., 28 (2009), 436-446.
  • [157] Morales-Munoz S„ Luque-Garcia J.L., Luque de Castro M.D., A continuous approach for the determination of Cr(VI) in sediment and soil based on the coupling of microwave-assisted water extraction, preconcentration, derivatization and photometric detection. Anal. Chim. Acta, 515 (2004), 343-348.
  • [158] Mizanur Rahman G.M., ‘Skip’ Kingston H.M., Development of a microwave-assisted extraction method and isotopic validation of mercury species in soils and sediments. J. Anal. At. Spectrom., 20 (2005), 183-191.
  • [159] Leufroy A., Noel L., Dufailly V., Beauchemin D., Guerin T., Determination of seven arsenie species in seafood by ion exchange chromatography coupled to inductively coupled plasma-mass spectrometry following microwave assisted extraction: Method validation and occurrence data. Talanta, 83 (2011), 770-779.
  • [160] Arain M.B., Kazi T.G., Jamali M.K., Jalbani N., Afridi H.I., Baig J.A., Speciation of heavy metals in sediment by conventional, ultrasound and microwave assisted single extraction methods: A comparison with modified sequential extraction procedure. J. Haz. Mat., 154 (2008), 998-1006.
  • [161] Pazos-Cape'ans P., Barciela-Alonso M.C., Bermejo-Barrera A., Bermejo-Barrera P., Chromium available fractions in arousa sediments using a modified microwave BCR protocol based on microwave assisted extraction. Talanta, 65 (2005), 678-685.
  • [162] Kazi T.G., Jalbani N., Baig J.A., Kandhro G.A., Afridi H.I., Arain M.B., Jamali M.K., Shah A.Q., Assessment of toxic metals in raw and processed milk samples using electrothermal atomic absorption spectrophotometer. Food Chem. Toxicol., 47 (2009), 2163-2169.
  • [163] Gonzalez A.M., Bames R.M., Comparison of microwave-assisted extraction and waste extraction test (WET) preparation for inductively coupled plasma spectroscopic analyses of waste samples. Anal. Bioanal. Chem., 374 (2002), 255-261.
  • [164] Romaris-Hortas V., Moreda-Pineiro A., Bermejo-Barrera P., Microwave assisted extraction of iodine and bromine from edible seaweed for inductively coupled plasma-mass spectrometry determination. Talanta, 79 (2009), 947-952.
  • [165] Armenta S., Garrigues S., de la Guardia M., Green analytical chemistry. Tr. Anal. Chem., 27 (2008), 497-511.
  • [166] Bosch Ojeda C., Sanchez Rojas F., Separation and preconcentration by a cloud point extraction procedure for determination of metals: an overview. Anal. Bioanal. Chem., 394 (2009), 759-782.
  • [167] Ghaedi M., Shokrollahia A., Niknamb K., Niknama E., Soylak M., Development of efficient method for preconcentration and determination of copper, nickel, zinc and iron ions in environmental samples by combination of cloud point extraction and flame atomic absorption spectrometry. Cent. Eur. J. Chem., 7(1) (2009), 148-154.
  • [168] Almeida Bezerra M., Arruda M.A.Z., Cloud point extraction as a procedure of separation and preconcentration for metal determination using spectroanalytical techniques: A Review. Appl. Spectrosc. Rev., 40 (2005), 269-299.
  • [169] Ghaedi M., Shokrollahi A., Ahmadia F., Rajabi H.R., Soylak M., Cloud point extraction for the determination of copper, nickel and cobalt ions in environmental samples by flame atomic absorption spectrometry. J. Haz. Mat., 150 (2008), 533-540.
  • [170] Hobbs S.E., Olesik J.W., The effect of desolvating droplets and vaporizing particles on ionization and excitation in Ar inductively couple plasmas. Spectrochim. Acta, B48 (1993), 817-833.
  • [171] Todoli J.L., Gras L., Hemandis V., Mora J., Elemental matrix effects in ICP-AES. J. Anal. At. Spectrom., 17 (2002), 142-169.
  • [172] Vassileva E., Koenig M., Determination of arsenic in plant samples by inductively coupled plasma atomic emission spectrometry with ultrasonic nebulization: a complex problem. Spectrochim. Acta, B56 (2001), 223-232.
  • [173] Grotti M., Ianni C., Frache R., Inductively coupled plasma optical emission spectrometric determination of trace elements in sediments after sequential selective extraction: effects of reagents and major elements on the analytical signal. Talanta, 57 (2002), 1053-1066.
  • [174] Paredes E., Maestre S.E., Todoli J.L., Use of stirred tanks for studying matrix effects caused by inorganic acids, easily ionized elements and organic solvents in inductively coupled plasma atomic emission spectrometry. Spectrochim. Acta, B61 (2006), 326-339.
  • [175] Grotti M., Leardi R., Frache R., Combined effects of inorganic acids in inductively coupled plasma optical emission spectrometry. Spectrochim. Acta, B57 (2002), 1915-1924.
  • [176] Borkowska-Burnecka J., Hordyńska K., Determination of gallium, indium, tin and lead by ICP- -OES - effects of acids and potassium compounds. CANAS’01 Colloquium Analytische Atomspektroskopie, s. 85, Freiberg 2001.
  • [177] Borkowska-Burnecka J., Włodarczyk M., Determination of metals in aqueous and aqueous-alcohol Solutions by ICP-AES. ACH Models in Chemistry, 136 (1999), 103-117.
  • [178] Włodarczyk M., Borkowska-Burnecka J., Optymalizacja parametrów wzbudzenia w indukcyjnie sprzężonej plazmie (ICP) przy oznaczaniu wybranych metali śladowych. Materiały: II Kongres Technologii Chemicznej, Wrocław, 15-18 września 1997, 1989-1992, Wrocław 1999.
  • [179] Borkowska-Burnecka J., Hordyńska K., Effects of various matrices on gallium and indium emission line intensities in an argon inductively coupled plasma. Colloquium Spectroscopicum Internationale XXXI, Book of abstracts, s. 362, Ankara 1999.
  • [180] Inductively coupled plasmas in analytical atomic spectrometry. Montaser A., Golightly D. W. (Ed.), VCH Publishers Inc., New York 1987.
  • [181] Todoli J.L., Mermet J.M., Ac id interferences in atomic spectrometry: analyte signal effects and subsequent reduction. Spectrochim. Acta, B54 (1999), 895-929.
  • [182] Todoli J.L., Mermet J.M., Canals A., Hemandis V., Acid effects in inductively coupled plasma atomic emission spectrometry with different nebulizers operated at very low sample consumption rates. J. Anal. At. Spectrom., 13 (1998), 55-62.
  • [183] Benson C.M., Zhong J., Gimelshein S.F., Levin D.A., Monaster A., Simulation of droplet heating and desolvation in inductively coupled plasma - Part II: coalescence in the plasma. Spectrochim. Acta, B58 (2003), 1453-1471.
  • [184] Żyrnicki W., Borkowska-Burnecka J., Selected problems of the ICP method in application to environmental analysis. [w:] Development in Analysis of Environmental Samples at the Edge of the 2P‘ Century (Third Annual Meeting of AOAC ICES). Warsaw 1996.
  • [185] Borkowska-Burnecka J., Żyrnicki W., Matrix effects in the determination of boron and aluminium by ICP-AES - study of the influence of acids and halides. Book of abstracts, Fr P 156, Euroanalysis IX, Bologna 1996.
  • [186] Fernandez A., Murillo M., Carrión N., Mermet J.M., Influence of operating conditions on the effects of acids in inductively coupled plasma atomic emission spectrometry. J. Anal. At. Spectrom., 9 (1994), 217-221.
  • [187] Marichy M., Mermet M., Mermet J.M., Some effects of low acid concentrations in inductively coupled plasma atomic emission spectrometry. Spectrochim. Acta, B45 (1990), 1195-
  • [188] Murillo M., Amaro R., Fernandez A., Influence of hydrogen gas over the interference of acids in inductively coupled plasma atomic emission spectrometry. Talanta, 60 (2003), 1171-1176.
  • [189] Iglesias M., Vaculovic T., Studynkova J., Poussel E., Mermet J.M., Influence of the operating conditions and of the optical transition on non-spectral matrix effects in inductively coupled plasma-atomic emission spectrometry. Spectrochim. Acta, B59 (2004), 1841-1850.
  • [190] Larrea M.T., Zaldivar B., Farinas J.C., Firgaira L.G., Pomares M., Matrix effect of aluminium, calcium and magnesium in axially viewing inductively coupled plasma atomic emission spectrometry. J. Anal. At. Spectrom., 23 (2008), 145-151.
  • [191] Andrade J.M., Cal-Prieto M J., Gomez-Carracedo M.P., Carlosena A., Prada D., A tutorial on multivariate calibration in atomic spectrometry techniques. J. Anal. At. Spectrom., 23 (2008), 15-28.
  • [192] Grotti M., Magi E., Frache R., Multivariate investigation of matrix effects in inductively coupled plasma atomic emission spectrometry using pneumatic or ultrasonic nebulization. J. Anal. At. Spectrom., 15 (2000), 89-96.
  • [193] Roncevic S., Siroki M., Effects of low acetic acid concentrations in inductively coupled plasma atomic emission spectrometry. J. Anal. At. Spectrom., 9 (1994), 99-104.
  • [194] Dubuisson C., Poussel E., Mermet J.M., Todoli J.L., Comparison of the effect of acetic acid with axially and radially viewed inductively coupled plasma atomic emission spectrometry: influence of the operating conditions. J. Anal. At. Spectrom., 13 (1998), 63-68.
  • [195] Todorovic M., Vidovic S., Ilic Z., Effect of aqueous organic solvents on the determination of trace elements by flame atomic absorption spectrometry and inductively coupled plasma atomic emission spectrometry. J. Anal. At. Spectrom., 8 (1993), 1113-1116.
  • [196] Todoli J.L., Canals A., Hernandis V., Behaviour of a single-bore high pressure pneumatic nebulizer operating with alcohols in inductively coupled plasma atomic emission spectrometry. J. Anal. At. Spectrom., 11 (1996), 949-956.
  • [197] Bertagnolli J.A., Neylan D.L., Hammargren D.D., Effect of surfactants on ICP analytical performance. At. Spectrosc., 14 (1993), 4-7.
  • [198] Borkowska-Burnecka J., Lesniewicz A., Multielemental analysis of samples with complex matrices by ICP-AES - comparison of pneumatic and ultrasonic nebulizers. Colloquium Spectroscopicum Internationale XXXIII. J.M Costa Fernandez, J.M. Vadillo Perez (Ed.), 353, Granada 2003.
  • [199] Brenner I.B., Le Marchand A., Daraed C., Chauvet L., Compensation od Ca and Na interference effects in axially and radially inductively coupled plasmas. Microchem. J., 63 (1999), 344—355.
  • [200] Chan G.C.-Y., Hieftje G.M., Using matrix effects as a probe for the study of the charge-transfer mechanism in inductively coupled plasma-atomic emission spectrometry. Spectrochim. Acta, B59 (2004), 163-183.
  • [201] Long S.E., Browner R.F., Influence of water on conditions in the inductively coupled argon plasma. Spectrochim. Acta, B43 (1988), 1461-1471.
  • [202] Daskalova N., Boevski Iv., Spectral interferences in the determination of trace elements in environmental materials by inductively coupled plasma atomic emission spectrometry. Spectrochim. Acta, B54 (1999), 1099-1122.
  • [203] Velitchkova N., Pentcheva E.N., Daskalova N., Determination of arsenic, mercury, selenium, thallium, tin and bismuth in environmental materials by inductively coupled plasma emission spectrometry. Spectrochim. Acta, B59 (2004), 871- 882.
  • [204] Kowalczyk J., Borkowska-Burnecka J., Zgarda A., Chlorofil i metale ciężkie w ogórkach szklarniowych, [w:] Mikrozanieczyszczenia w środowisku człowieka. M. Janosz-Rajczyk (red.), Wyd. Politechniki Częstochowskiej, Konferencje, 55 (2004), 135-140.
  • [205] Herzberg G., Molecular spectra and molecular structure. I. Spectra of diatomic molecules. D. Van Nostrand Co., Inc, Princeton 1950.
  • [206] Brown J.M., Carrington A., Rotational spectroscopy of diatomic molecules. Cambridge University Press, Cambridge 2003.
  • [207] Bemath P.F., Spectra of atoms and molecules. Oxford University Press, 1995.
  • [208] Lefebvre-Brion H., Field R.W., The spectra and dynamics of diatomic molecules. Revised and enlarged edition. Elsevier Academic Press, 2005.
  • [209] Borkowska-Burnecka J., Żyrnicki W., Analysis of the 3Π-X1Ʃ transition of gallium monoiodide. Chem. Phys. Lett., 238 (1995), 346-352.
  • [210] Martin R.W., Merer A.J., Rotational structure in the A2Ʃ+ , B2Ʃ+ , and a4Ʃ - X2Π transitions of germanium fluoride. Can. J. Phys., 51 (1973), 125-43.
  • [211] Barnes M., Hajigeorgiou P.G., Merer A.J., Rotational analysis of the A'5Δ - X5Π transition of chromium monoxide. J. Mol. Spectrosc., 160 (1993), 289-310.
  • [212] Mofolo R.M., Canario C.M., Katskov D.A., Tittarelli P., Atomic and molecular spectra of vapors evolved in a graphite furnace. Part 5: gallium, indium and thallium nitrates and chlorides. Spectrochim. Acta, B57 (2002), 423—438.
  • [213] Timmermans E.A.H., de Groote F.P.J., Jonkers J., Gamero A., Sola A., van der Mullen J.J.A.M., Atomic emission spectroscopy for the on-line monitoring of incineration processes. Spectrochim. Acta, B58 (2003), 823-836.
  • [214] Bagare S.P., Balachandra Kumar K., Rajamanickam N., Identification of AlF molecular lines in sunspot umbral spectra. Solar Phys., 234 (2006), 1-20.
  • [215] Wallace L., Hinkle K., Detection of the 1.6 ϻm E4Π - A4Π FeH system in sunspot and cool star spectra. Astrophys. J., 559 (2001), 424-427.
  • [216] Yang X., Lin M., Zou W., Zhang B., DFT study on the ground and the first excited states of gallium monohalides. Chem. Phys. Lett., 362 (2002), 190-198.
  • [217] Setzer K.D., Borkowska-Burnecka J., Żyrnicki W., Fink E.FL, Near-infrared electronic transitions of Pb2. J. Mol. Spectrosc., 203 (2000), 244-248.
  • [218] Setzer K.D., Borkowska-Burnecka J., Żyrnicki W., Pravilov A.M., Fink E.H., Das K.K., Liebermann H.P., Alekseyev A.B., Buenker R.J., Experimental and theoretical study of the electronic States and spectra of PbLi. J. Mol. Spectrosc., 217 (2003), 127-141.
  • [219] Das K.K., Liebermann H.-P., Buenker R.J., Hirsch G., Ab initio configuration interaction calculations of the potential curves and lifetimes of the low-lying electronic states of the lead dimer. J. Chem. Phys., 104 (1996), 6631-6642.
  • [220] Sontag H., Weber R., Laser-induced fluorescence of diatomic lead (Pb2). J. Mol. Spectrosc., 100 (1983), 75-81.
  • [221] Heaven M.C., Miller T.A., Bondybey V.E., Laser spectroscopy of Pb2 produced by laser vaporization. J. Phys. Chem., 87 (1983), 2072-2075.
  • [222] Borkowska-Burnecka J., Żyrnicki W., Badowski N., Rotational analysis of the a4Ʃ--X2Π 0- 0 band of germanium monobromide. J. Mol. Spectrosc., 156 (1992), 245-260.
  • [223] Setzer K., Borkowska-Burnecka J., Żyrnicki W., Fink E.H., High-resolution Fourier-transform study of the X22Π3/2 - X 12Π1/2 fine structure transitions of PbH nad PbD. J. Mol. Spectrosc., 252 (2008), 176-184.
  • [224] Huber K.P., Herzberg G., Molecular spectra and molecular structure. IV. Constants of diatomic molecules. Van Nostrand Reinhold Co., London 1979.
  • [225] Żyrnicki W., Borkowska-Burnecka J., Analysis of the B2Ʃ+ - X2Π3/2 subsystem of germanium(I) chloride. Spectrosc. Lett., 15 (1982), 39-46.
  • [226] Bessis N., Tergiman Y.S., Theoretical analysis of the centrifugal distortion contributions to the rotational spectra of 2Π diatomics. J. Mol. Spectrosc., 93 (1982), 16-45.
  • 227] Albritton D.L., Harrop W.J., Schmeltekopf A.L., Zare R.N., Crow E.L., Critique of the term value approach to determining molecular constants from the spectra of diatomic molecules. J. Mol. Spectrosc., 46 (1973), 67-88.
  • [228] Magg U., Jones H., The diode laser spectrum of three forms of lead hydride (PbH) in its 2Π1/2 ground state. Chem. Phys. Lett., 166 (1990), 253-257.
  • [229] Ziebarth K., Setzer K.D., Shestakov O., Fink E.H., High-resolution study of the X22Π3/2 - X 12Π1/2 fine structure transitions of PbF and PbCl. J. Mol. Spectrosc., 191 (1998), 108-116.
  • [230] Shanmugavel R., Bagare S.P., Rajamanickam N., Balachandra Kumar K., Identification of beryllium hydride isotopomer lines in sunspot umbral spectra. Serb. Astron. J., 176 (2008), 51-58.
  • [231] Borkowska-Burnecka J., Żyrnicki W., Setzer K.D., Fink E.H., Rotational and vibrational temperatures measured in a chemiluminescent flame from FTIR Bi2 emission spectra. J. Quant. Spectrosc. Radiat. Transfer, 86 (2004), 87-95.
  • [232] Borkowska-Burnecka J., Żyrnicki W., Fink E.H., Spectroscopic study of chemiluminescence. [w:] Advances in plasma chemistry, Acta Agrophysica 80 (2002), 9-16.
  • [233] Breidohr R„ Setzer K.D., Shestakov O., Fink E.H., Żyrnicki W., The α3Ʃu(α11u) --X1Ʃ+g(XO+g) transition of Bi2. J. Mol. Spectrosc., 166 (1994), 251—263.
  • [234] Breidohr R., Setzer K.D., Shestakov O., Fink E.H., Żyrnicki W., Near-infrared electronic transitions of BiN. J. Mol. Spectrosc., 166 (1994), 471-85.
  • [235] Alekseyev A.B., Liebermann H.-P., Buenker R.J., Hirsch G., Theoretical study of the low-energy BiN spectrum. Chem. Phys. Lett., 257 (1996), 75-81.
  • [236] Welz B., Mores S., Carasek E., Vale M.G.R., Okruss M., Becker-Ross H., High-resolution continuum source atomic and molecular absorption spectrometry - A review. Appl. Spectrosc. Rev., 45 (2010), 327-354.
  • [237] Nagarajan K., Rajamanickam N., Franck-Condon factors and r-centroids of certain band systems of astrophysical molecules SO and TiO. Astrophys. Space Sci., 259 (1998), 421—425.
  • [238] Melendez F.J., Sandoval L., Palma A., Franck-Condon factors for diatomic molecules with an- harmonic corrections. J. Mol. Struct. (Teochem), 580 (2002), 91-99.
  • [239] Sorkhabi O., Xu D.D., Blunt V.M., Lin FI., Price R., Wróbel J.D., Jackson W.M., Franck-Condon factors and analysis of several electronic systems of C2. J. Mol. Spectrosc., 188 (1998), 200-208.
  • [240] Nagarajan K., Femandez Gomez M., Lopez Gonzalez J.J., Rajamanickam N., Franck-Condon factors and r-centroids for certain band systems of SiD, SiF and SiN molecules of astrophysical in- terest. Astron. Astrophys. Suppl. Ser., 129 (1998), 157-159.
  • [241] Rajamanickam N., Vignesh Kumar M., Raja V., Karthikeyan B., Molecular parameters for the band systems A, B-X of AuH and A-Xof AuD AuH, AuD. Braz. J. Phys., 36 (2006), 1300-1304.
  • [242] Borkowska-Burnecka J., Żyrnicki W., Fluorine determination and matrix effects in dc and hf hollow cathode discharges. Spectrosc. Lett., 22 (1989), 1065-1078.
  • [243] Calokerinos A.C., Molecular emission cavity analysis: principles and applications. Tr. Anal. Chem., 16(1997), 78-84.
  • [244] Rigin V., Determination of microgram amounts of free sulphur in transition metal sulphides using solvent extraction and molecular emission cavity analysis. Anal. Chim. Acta, 327 (1996), 139-143.
  • [245] Maleki N., Safavi A., Ramezani Z., New cavity design suitable for monitoring gaseous samples by molecular emission cavity analysis. Anal. Chim. Acta, 409 (2000), 197-201.
  • [246] Safavi A., Maleki N., Doroodmand M.M., Koleini M.M., Carbon nanostructures as catalytic sup port for chemiluminescence of sulfur compounds in a molecular emission cavity analysis system. Anal. Chim. Acta, 644 (2009), 61-67.
  • [247] Celik A., Henden E., Application of molecular emission cavity analysis to the determination of tin in various samples based on hydride generation. Anal. Chim. Acta, 333 (1996), 295
  • [[248] Al-Zamil I.Z., Townshend A., Molecular emission cavity analysis. Part 29. Determination of tin after conversion to its volatile hydride. Anal. Chim. Acta, 209 (1988), 275-279.
  • [249] Ay U., Henden E., Celik A., Determination of organic and inorganic tin compounds in antifouling paints by molecular emission cavity analysis. Ozean J. Appl. Sci., 4 (2011), 105-113.
  • [250] Welz B., Lepria F.G., Araujo R.G.O., Ferreira S.L.C., Huang M.D., Okruss M., Becker-Ross FI., Determination of phosphorus, sulfur and the halogens using high-temperature molecular absorption spectrometry in flames and furnaces - A review. Anal. Chim. Acta, 647 (2009), 137-148.
  • [251] Haraguchi FI., Fuwa K., Determination of phosphorus by molecular absorption flame spectrometry using the phosphorus monoxide band. Anal. Chem., 48 (1976), 784—786.
  • [252] Dittrich K., Molecular absorption spectrometry by electrothermal volatilization in a graphite furnace. Part 1. Principles of the method and studies of the molecular absorption of gallium and indium halides. Anal. Chim. Acta, 97 (1978), 59-68.
  • [253] Ferreira H.S., Lepri F.G., Welz B., Caraseka E., Huang M.D., Determination of sulfur in biological samples using high-resolution molecular absorption spectrometry in a graphite furnace with direct solid sampling. J. Anal. At. Spectrom., 25 (2010), 1039-1045.
  • [254] Huang M.D., Becker-Ross FI., Florek S., Okruss M., Welz B., Mores S., Determination of iodine via the spectrum of barium mono-iodide using high-resolution continuum source molecular absorption spectrometry in a graphite furnace. Spectrochim. Acta, B64 (2009), 697-701.
  • [255] Gleisner H., Einax J.W., Mores S., Welz B., Carasek E., A fast and accurate method for the determination of total and soluble fluorine in toothpaste using high-resolution graphite furnace molecular absorption spectrometry and its comparison with established techniques. J. Pharmaceut. Biomed. Analysis, 54 (2011), 1040-1046.
  • [256] Huang M.-D., Becker-Ross H., Florek S., Heitmann U., Okruss M., Welz B., Ferreira H.S., High- -resolution continuum source molecular absorption spectrometry of nitrogen monoxide and its application for the determination of nitrate. J. Anal. At. Spectrom., 25 (2010), 163-168.
  • [257] Huang M.D., Becker-Ross FI., Florek S., Fleitmann U., Okruss M., Determination of halogens via molecules in the air-acetylene flame using high-resolution continuum source absorption spectrometry. Part II. Chlorine. Spectrochim. Acta, B61 (2006), 959-964.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-49c68718-3ca0-4fe4-bfa8-3c051b8f8cc7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.