PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

SACSESS : the EURATOM FP7 project on actinide separation from spent nuclear fuels

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
International Workshop “Towards safe and optimized separation processes, a challenge for nuclear scientists” (FP7 European Collaborative Project SACSESS) (22-24.04.2015 ; Warsaw, Poland)
Języki publikacji
EN
Abstrakty
EN
Recycling of actinides by their separation from spent nuclear fuel, followed by transmutation in fast neutron reactors of Generation IV, is considered the most promising strategy for nuclear waste management. Closing the fuel cycle and burning long-lived actinides allows optimizing the use of natural resources and minimizing the long-term hazard of high-level nuclear waste. Moreover, improving the safety and sustainability of nuclear power worldwide. This paper presents the activities striving to meet these challenges, carried out under the Euratom FP7 collaborative project SACSESS (Safety of Actinide Separation Processes). Emphasis is put on the safety issues of fuel reprocessing and waste storage. Two types of actinide separation processes, hydrometallurgical and pyrometallurgical, are considered, as well as related aspects of material studies, process modeling and the radiolytic stability of solvent extraction systems. Education and training of young researchers in nuclear chemistry is of particular importance for further development of this field.
Czasopismo
Rocznik
Strony
809--814
Opis fizyczny
Bibliogr. 24 poz., rys.
Twórcy
autor
  • Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Radiochemistry and Process Department, Marcoule, France
autor
  • Karlsruhe Institute of Technology (KIT), Postfach 3640, D-76021, Karlsruhe, Germany
autor
  • Institute of Nuclear Chemistry and Technology, 16 Dorodna Str., 03-195 Warsaw, Poland
Bibliografia
  • 1. Bourg, S., Hill, C., Caravaca, C., Rhodes, C., Ekberg, C., Taylor, R., Geist, A., Modolo, G., Cassayre, L., Malmbeck, R., Harrison, M., de Angelis, G., Espartero, A., Bouvet, S., & Ouvrier, N. (2011). ACSEPT – Partitioning technologies and actinide science: Towards pilot facilities in Europe. Nucl. Eng. Des., 241, 3427–3435. DOI: 10.1016/j.nucengdes.2011.03.011.
  • 2. Salvatores, M., & Palmiotti, G. (2011). Radioactive waste partitioning and transmutation within advanced fuel cycles: Achievements and challenges. Prog. Part. Nucl. Phys., 66, 144–166.
  • 3. SACSESS report summary, http://cordis.europa.eu/ result/rcn/158019_en.html.
  • 4. Modolo, G., Wilden, A., Geist, A., Magnusson, D., & Malmbeck, R. (2012). A review of the demonstration of innovative solvent extraction processes for the recovery of trivalent minor actinides from PUREX raffinate. Radiochim. Acta, 100, 715–725. DOI: 10.1524/ract.2012.1962.
  • 5. Wilden, A., Modolo, G., Schreinemachers, C., Sadowski, F., Lange, S., Sypula, M., Magnusson, D., Geist, A., Lewis, F. W., Harwood, L. M., & Hudson, M. J. (2013). Direct selective extraction of actinides(III) from PUREX raffi nate using a mixture of CyMe4BTBP and TODGA as 1-cycle SANEX solvent. Part III: Demonstration of a laboratory-scale counter-current centrifugal contactor process. Solvent Extr. Ion Exch., 31, 519–537. DOI: 10.1080/07366299.2013.775890.
  • 6. Modolo, G., Asp, H., Schreinemachers, C., & Vijgen, H. (2007). Development of a TODGA based process for partitioning of actinides from a PUREX raffinate. Part I: Batch extraction optimization studies and stability tests. Solvent Extr. Ion Exch., 25, 703–721. DOI: 10.1080/07366290701634578.
  • 7. Wilden, A., Modolo, G., Kaufholz, P., Sadowski, F., Lange, S., Sypula, M., Magnusson, D., Muellich, U., Geist, A., & Bosbach, D. (2015). Laboratory-scale counter-current centrifugal contactor demonstration of an innovative-SANEX process using a water soluble BTP. Solvent Extr. Ion Exch., 33, 91–108. DOI: 10.1080/07366299.2014.952532.
  • 8. Carrott, M., Geist, A., Hérès, X., Lange, S., Malmbeck, R., Miguirditchian, M., Modolo, G., Wilden, A., & Taylor, R. (2015). Distribution of plutonium, americium and interfering fission products between nitric acid and a mixed organic phase of TODGA and DMDOHEMA in kerosene, and implications for the design of the “EURO-GANEX” process. Hydrometallurgy, 152, 139–148.
  • 9. Poinssot, C., Rostaing, C., Baron, P., Warin, D., & Boullis, B. (2012). Main results of the French program on partitioning of minor actinides, a significant improvement towards nuclear waste reduction. Procedia Chem., 7, 358–366. DOI: 10.1016/j.proche.2012.10.056.
  • 10. Rostaing, C., Poinssot, C., Warin, D., Baron, P., & Lorrain, B. (2012). Development and validation of the EXAm separation process for single Am recycling. Procedia Chem., 7, 367–373.
  • 11. Modolo, G., Kluxen, P., & Geist, A. (2010) Demonstration of the LUCA process for the separation of americium(III) from curium(III), californium(III), and lanthanides(III) in acidic solution using a synergistic mixture of bis(chlorophenyl)dithiophosphinic acid and tris(2-ethylhexyl)phosphate. Radiochim. Acta, 98, 193–201. DOI: 10.1524/ract.2010.1708.
  • 12. Bollesteros, M. -J., Calor, J. -N., Costenoble, S., Montuir, M., Pacary, V., Sorel, C., Burdet, F., Espinoux, D., Hérès, X., & Eysseric, C. (2012). Implementation of americium separation from a PUREX raffinate. Procedia Chem., 7, 178–183.
  • 13. Chapron, S., Marie, C., Arrachart, G., Miguirditchian, M., & Pellet-Rostaing, S. (2015). New insight into the americium/curium separation by solvent extraction using diglycolamides. Solvent Extr. Ion Exch., 33(3), 236–248.
  • 14. Narbutt, J., Wodyński, A., & Pecul, M. (2015). The selectivity of diglycolamide (TODGA) and bis-triazine--bipyridine (BTBP) ligands in actinide/lanthanide complexation and solvent extraction separation – a theoretical approach. Dalton Trans., 44(6), 2657–2666. DOI: 10.1039/c4dt02657h.
  • 15. Bryantsev, V. S., & Hay, B. P. (2015). Theoretical prediction of Am(III)/Eu(III) selectivity to aid the design of actinide-lanthanide separation agents. Dalton Trans., 44(17), 7935–7942. DOI: 10.1039/c4dt03275f.
  • 16. Mincher, B. J., Elias, G., Martin, L. R., & Mezyk, S. P. (2009). Radiation chemistry and the nuclear fuel cycle. J. Radioanal. Nucl. Chem., 282, 645–649.
  • 17. Inoue, T. (2002). Actinide recycling by pyro-process with metal fuel FBR for future nuclear fuel cycle system. Prog. Nucl. Energy, 40, 547–554.
  • 18. Koyama, T., Sakamura, Y., Iizuka, M., Kato, T., Murakami, T., & Glatz, J. -P. (2012). Development of pyro-processing fuel-cycle technology for closing actinide cycle. Procedia Chem., 7, 772–778.
  • 19. Soucek, P., Malmbeck, R., Nourry, C., & Glatz, J. -P. (2011). Pyrochemical reprocessing of spent fuel by 814 S. Bourg, A. Geist, J. Narbutt electrochemical techniques using solid aluminium cathodes. Energy Procedia, 7, 396–404.
  • 20. Chmielewski, A. G. (2008). Nuclear fi ssile fuels worldwide reserves. Nukleonika, 53(Suppl. 2), S11–S14.
  • 21. http://asgardproject.eu/
  • 22. www.talisman-project.eu
  • 23. http://cinch-project.eu/
  • 24. John, J., Lehto, J., Koivula, T., & Omtvedt, J. P. (2015). Cooperation in education and training in nuclear- and radiochemistry in Europe. J. Radioanal. Nucl. Chem., 304, 459–466.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-49c5406c-fb80-44ec-8587-5a0f3437bea7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.