PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Convection and radiation cooling of overhead power lines - laboratory verification using thermography

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The thermal behavior of overhead power lines depends upon physical parameters, such as surface emissivity and line dimensions, as well as weather conditions. In this paper, the results of the convection and radiation cooling of a conductor that simulate a power line are presented. Laboratory experiments were conducted and the results were compared with the data obtained using empirical formulae from the literature. Both the laminar and the turbulent airflow were investigated.
Wydawca
Rocznik
Strony
107--110
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wykr., wzory
Twórcy
  • Aristotle University of Thessaloniki, Department of Electrical and Computer Engineering, 54 124 Thessaloniki, Greece
autor
  • Lodz University of Technology, Institute of Electronics, 211/215 Wólczańska St., 90 924 Lodz, Poland
autor
  • Gent University, Department of Electronics and Information Systems, Sint-Pietersnieuwstraat 41, B-9000 Gent, Belgium
  • Aristotle University of Thessaloniki, Department of Electrical and Computer Engineering, 54 124 Thessaloniki, Greece
autor
  • Lodz University of Technology, Institute of Electronics, 211/215 Wólczańska St., 90 924 Lodz, Poland
Bibliografia
  • [1] IEC 60287-2-1:2015 RLV: Electric cables – Calculation of the current rating – Part 2-1: Thermal resistance – Calculation of thermal resistance. 2015.
  • [2] IEEE 738-2012: Standard for calculating the current-temperature relationship of bare overhead conductors. 2013.
  • [3] Morgan V.: External thermal resistance of aerial bundled cables. IEE Proceedings C, vol. 140, no. 2, pp. 65-72, 1993.
  • [4] Slaninka P.: External thermal resistance of air-installed power cables. Proceedings of IEE, vol. 116, no. 9, pp. 1547-1552, 1969.
  • [5] Whitehead S., Hutchings E. E.: Current rating of cables for transmission and distribution. Journal of the Institution of Electrical Engineers, vol. 83, no. 152, pp. 517-557, 1938.
  • [6] Theodosoglou, I., Chatzipanagiotou, P., Chatziathanasiou V., Boier A., Rata M.: Measurement and calculation of thermal characteristics of an overhead power line. Acta Electrotech Proc. 5th Int. Conf. Mod. Power. Syst., pp. 474-478, 2013.
  • [7] Anders G.: Rating of electric power cables in unfavorable thermal environment. Wiley-IEEE Press, 2005.
  • [8] Chatziathanasiou, V., Chatzipanagiotou, P., Papagiannopoulos I., De Mey G., Wiecek B.: Dynamic thermal analysis of underground medium power cables using thermal impedance, time constant distribution and structure function. Appl. Therm. Eng., vol. 60, no. 1-2, pp. 256–260, 2013.
  • [9] Chatzipanagiotou, P., Chatziathanasiou, V., De Mey G., Wiecek B.: Influence of soil humidity on the thermal impedance, time constant and structure function of underground cables: A laboratory experiment. Appl. Therm. Eng., vol. 113, pp. 1444–1451, 2017.
  • [10] Neher J. H., McGrath M. H.: The calculation of the temperature rise and load capability of cable systems. AIEE, vol. 76, no. 3, pp. 752-764, 1957.
  • [11] Bergman T., Lavine A., Incropera F., DeWitt D.: Introduction to Heat Transfer. John Wiley & Sons, Inc., 2011.
  • [12] Morgan V.: The overall convective heat transfer from smooth circular cylinders. Advances in Heat Transfer, vol. 11, pp. 199-264, 1975.
  • [13] Boetcher S.: Natural convection from circular cylinders. Springer International Publishing, 2014.
  • [14] Hilpert R.: Wärmeabgabe von geheizten Drähten und Rohren im Luftstrom. Forsch Ing-Wes, vol. 4, no. 5, pp. 215–224, 1933.
  • [15] Žukauskas A.: Heat Transfer from Tubes in Crossflow. Advances in Heat Transfer, vol. 8, pp. 93-160, 1972.
  • [16] Churchill S., Chu H.: Correlating equations for laminar and turbulent free convection from a horizontal cylinder. International Journal of Heat and Mass Transfer, vol. 18, pp. 1049-1053, 1975.
  • [17] Churchill S., Bernstein M.: A Correlating Equation for Forced Convection from Gases and Liquids to a Circular Cylinder in Crossflow. J. Heat Transfer, vol. 99, no. 2, pp. 300-306, 1977.
  • [18] Morgan V.: The Overall Convective Heat Transfer from Smooth Circular Cylinders. Advances in Heat Transfer, Vol. 11, pp. 199-264, 1975.
  • [19] Brito Filho J. P.: Heat transfer in bare and insulated electrical wires with linear temperature-dependent resistivity. Applied Thermal Engineering, vol. 112, pp. 881–887, 2017.
  • [20] IEC 60287-2-3:2017: Electric cables - Calculation of the current rating - Part 2-3: Thermal resistance - Cables installed in ventilated tunnels, 2017.
  • [21] Sedaghat A., de León F.: Thermal Analysis of Power Cables in Free Air: Evaluation and Improvement of the IEC Standard Ampacity Calculations. IEEE Transactions on Power Delivery, vol. 29, no. 5, pp. 2306–2314, 2014.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-49c49285-6665-4bb1-980d-165cb47af972
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.