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SOME PROPERTIES OF GENERALIZED TRIBONACCI
QUATERNIONS
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Abstract

In this paper we introduce distinct types of Tribonacci quaternions. We describe
dependences between them and we give some their properties also related to a matrix
representation.

1. Introduction

Let H be the set of quaternions z of the form

(1) z = a+ bi+ cj + dk,

where a, b, c, d ∈ R and i, j, k are complex operators such that

(2) i2 = j2 = k2 = ijk = −1
and

(3) ij = −ji = k, jk = −kj = i, ki = −ik = j.

If z1 = a1 + b1i + c1j + d1k and z2 = a2 + b2i + c2j + d2k are any
two quaternions then the equality, the addition, the substraction and the
multiplication by scalar are defined as follows.
Equality: z1 = z2 only if a1 = a2, b1 = b2, c1 = c2, d1 = d2,
addition: z1 + z2 = (a1 + a2) + (b1 + b2) i+ (c1 + c2) j + (d1 + d2) k,
substraction: z1 − z2 = (a1 − a2) + (b1 − b2) i+ (c1 − c2) j + (d1 − d2) k,
multiplication by scalar s ∈ R: sz1 = sa1 + sb1i+ sc1j + sd1k.
The quaternion multiplication is defined using (2).
The conjugate of a quaternion z is defined by

(4) z∗ = (a+ bi+ cj + dk)∗ = a− bi− cj − dk.
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Moreover we use the following notation for
real part: <z = (z + z∗) /2 = a ∈ R,
imaginary part: =z = (z − z∗) /2 = bi+ cj + dk ∈ H.

The norm of a quaternion z is defined by

(5) N(z) = a2 + b2 + c2 + d2.

For the basics on the quaternions theory, see [12].
Let Fn be the nth Fibonacci number defined recursively by Fn = Fn−1+

Fn−2 for n ≥ 2 with the initial terms F0 = F1 = 1. There are many numbers
defined by linear recurrence relations and they are also named as numbers
of the Fibonacci type. We list some of them.

• Ln = Ln−1+Ln−2, for n ≥ 2 with L0 = 2, L1 = 1 – Lucas numbers,
• Pn = 2Pn−1+Pn−2, for n ≥ 2 with P0 = 0, P1 = 1 – Pell numbers,
• Qn = 2Qn−1 +Qn−2, for n ≥ 2 with Q0 = 2, Q1 = 2 – Pell-Lucas
numbers,
• Jn = Jn−1 + 2Jn−2, for n ≥ 2 with J0 = 0, J1 = 1 – Jacobsthal
numbers,
• jn = jn−1+2jn−2, for n ≥ 2 with j0 = 2, j1 = 1 – Jacobsthal-Lucas
numbers.

These numbers have many applications in distinct areas of mathematics
also in the quaternions theory.

In 1963 Horadam [5] introduced nth Fibonacci and Lucas quaternions.
Three decades later in [6] Horadam mentioned about the possibility of in-
troducing Pell quaternions and generalized Pell quaternions. Interesting
results concerning Pell quaternions, Pell-Lucas quaternions have been ob-
tained quite recently and can be found in [2], [11]. Jacobsthal quaternions
and Jacobsthal-Lucas quaternions were introduced in [10].

In the most recent paper of G. Cerda-Morales (see [1]) we can find the
definition of generalized Tribonacci quaternions due to their coefficients.
The definition of these quaternions is based on the definition of generalized
Tribonacci numbers Vn

Vn = rVn−1 + sVn−2 + tVn−3, for n ≥ 3,

where V0 = a, V1 = b, V2 = c are arbitrary integers and r, s, t are real
numbers. For r = s = t = 1 we have the set of quaternions defined in this
paper. We present some properties of generalized Tribonacci quaternions,
in particular relations between them.
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2. The Tribonacci numbers

Let n ≥ 0 be integer. The nth Tribonacci number Tn is defined by T0 = 1,
T1 = 1, T2 = 2, and

(6) Tn = Tn−1 + Tn−2 + Tn−3, for n ≥ 3.

Tribonacci numbers have been firstly defined by Feinberg in 1963, see [3].
The characteristic equation of (6) has the form x3 − x2 − x− 1 = 0 and

it has roots
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Hence the Binet formula for the Tribonacci number Tn has the form

(7) Tn =
αn+2

(α− β) (α− γ)
+

βn+2

(β − α) (β − γ)
+

γn+2

(γ − α) (γ − β)
.

There are some versions of Tribonacci numbers defined by the same linear
recurrence relation as Tn but with different initial conditions.

The nth generalized Tribonacci number tn is a number defined recursively
by the recurrence relation of the form tn = tn−1+tn−2+tn−3 for n ≥ 3 with
fixed t0, t1, t2. For special value of t0, t1, t2 we obtain different kinds of
Tribonacci numbers. If t0 = 1, t1 = 1, t2 = 2 then we obtain the definition
of Tn. Apart Tribonacci numbers Tn we define other kinds of Tribonacci
numbers namely numbers Rn, Sn and Un. For n ≥ 0 we define three types
of Tribonacci numbers as follows
R0 = 3, R1 = 1, R2 = 3 and Rn = Rn−1 +Rn−2 +Rn−3 for n ≥ 3,
S0 = 3, S1 = 2, S2 = 5 and Sn = Sn−1 + Sn−2 + Sn−3 for n ≥ 3,
U0 = 0, U1 = 1, U2 = 2 and Un = Un−1 + Un−2 + Un−3 for n ≥ 3.

The Table 1 presents values of these Tribonacci numbers for n = 0, 1, ..., 10.

n 0 1 2 3 4 5 6 7 8 9 10
Tn 1 1 2 4 7 13 24 44 81 149 274
Rn 3 1 3 7 11 21 39 71 131 241 443
Sn 3 2 5 10 17 32 59 108 199 366 673
Un 0 1 2 3 6 11 20 37 68 125 230

Table 1.
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Above Tribonacci numbers were considered in [3], [7], [8], [9] where among
other Binet formulas for them were found. Moreover in [8] some relations
between Tribonacci numbers were given. We recall these dependences

(8) Rn = Tn−1 + 2Tn−2 + 3Tn−3, for n ≥ 3

(9) Sn = 3Tn − Tn−1, for n ≥ 1

(10) Un = Tn−1 + Tn−2, for n ≥ 2

(11)
n∑
l=0

Ul = Tn+1 − 1

(12)
n∑
l=1

Rl = 2Un+1 + Un−1 − 3

(13)
n∑
l=0

Sl =
3Un+2 + 2Un+1 − Un − 2

2

(14)
n∑
l=0

Tl =
Un+2 + Un+1 − 1

2
.

From the above identities we can obtain other relations

(15) 2Tn = Un+1 + Un−1, for n ≥ 1

(16)
n∑
l=1

Rl = 3Tn + Tn−1 − 3

(17)
n∑
l=0

Sl = Tn+2 + 2Tn − 1

(18)
n∑
l=0

Tl =
Tn+2 + Tn − 1

2
.
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3. The Tribonacci quaternions

For n ≥ 0 the nth generalized Tribonacci quaternion TQn is defined as

(19) TQn = tn + itn+1 + jtn+2 + ktn+3.

In particular for Tribonacci numbers we obtain distinct Tribonacci quater-
nions. Using presented earlier Tribonacci numbers Tn, Sn, Rn and Un we
have four types of Tribonacci quaternions. Then

(20) TTQn = Tn + iTn+1 + jTn+2 + kTn+3

(21) TRQn = Rn + iRn+1 + jRn+2 + kRn+3

(22) TSQn = Sn + iSn+1 + jSn+2 + kSn+3

(23) TUQn = Un + iUn+1 + jUn+2 + kUn+3

Firstly we give relations between Tribonacci quaternions.

Theorem 1. Let n be an integer. Then
(i) TRQn = TTQn−1 + 2TTQn−2 + 3TTQn−3, for n ≥ 3,
(ii) TSQn = 3TTQn − TTQn−1, for n ≥ 1,
(iii) TUQn = TTQn−1 + TTQn−2, for n ≥ 2,
(iv) 2TTQn = TUQn+1 + TUQn−1, for n ≥ 1.

Proof. (i) Using (21) and (8) we have

TRQn = Rn + iRn+1 + jRn+2 + kRn+3 =
= (Tn−1 + 2Tn−2 + 3Tn−3) + i (Tn + 2Tn−1 + 3Tn−2)+
+j (Tn+1 + 2Tn + 3Tn−1) + k (Tn+2 + 2Tn+1 + 3Tn) =
= (Tn−1 + iTn + jTn+1 + kTn+2)+
+2 (Tn−2 + iTn−1 + jTn + kTn+1)+
+3 (Tn−3 + iTn−2 + jTn−1 + kTn) =
= TTQn−1 + 2TTQn−2 + 3TTQn−3.

In the same way, using (9), (10) and (15) one can easily prove identities
(ii)-(iv). �

The next theorem gives formulas for sums of Tribonacci quaternions.

Theorem 2. Let n be an integer. Then

(i)
n∑
l=0

TUQl = TTQn+1 − TTQ0,

(ii)
n∑
l=1

TRQl = 2TUQn+1 + TUQn−1 − (3 + 4i+ 7j + 14k) ,

(iii)
n∑
l=0

TSQl =
3TUQn+2 + 2TUQn+1 − TUQn

2
− (1 + 4i+ 6j + 11k) ,
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(iv)
n∑
l=0

TTQl =
TUQn+2 + TUQn+1 − (1 + 3i+ 5j + 9k)

2
,

(v)
n∑
l=1

TRQl = 3TTQn + TTQn−1 − (3 + 4i+ 7j + 14k) ,

(vi)
n∑
l=0

TSQl = TTQn+2 + 2TTQn − (1 + 4i+ 6j + 11k) ,

(vii)
n∑
l=0

TTQl =
TTQn+2 + TTQn − (1 + 2i+ 4j + 8k)

2
.

Proof. (i) Using (23) and (11) we have

n∑
l=0

TUQl = TUQ0 + TUQ1 + . . .+ TUQn =

= (U0 + iU1 + jU2 + kU3)+
+ (U1 + iU2 + jU3 + kU4) + . . .+
+(Un + iUn+1 + jUn+2 + kUn+3) =
= (U0 + U1 + . . .+ Un)+
+i (U1 + U2 + . . .+ Un+1)+
+j (U2 + U3 + . . .+ Un+2)+
+k (U3 + U4 + . . .+ Un+3) =
= Tn+1 − 1 + i(Tn+2 − 1− U0) + j(Tn+3 − 1− U0 − U1)+
+k (Tn+4 − 1− U0 − U1 − U2) =
= Tn+1 + iTn+2 + jTn+3 + kTn+4 − (1 + i+ 2j + 4k),

which ends the proof. In the same way one can easily prove (ii)-(vii). �

4. The Binet formula and a matrix representation

Using the Binet formula for Tribonacci numbers Tn we can give the direct
formula for nth Tribonacci quaternion

TTQn = αn+2

(α−β)(α−γ) +
βn+2

(β−α)(β−γ) +
γn+2

(γ−α)(γ−β)+

+i
(

αn+3

(α−β)(α−γ) +
βn+3

(β−α)(β−γ) +
γn+3

(γ−α)(γ−β)

)
+

+j
(

αn+4

(α−β)(α−γ) +
βn+4

(β−α)(β−γ) +
γn+4

(γ−α)(γ−β)

)
+

+k
(

αn+5

(α−β)(α−γ) +
βn+5

(β−α)(β−γ) +
γn+5

(γ−α)(γ−β)

)
.

For other types of Tribonacci quaternions we can obtain analogous formulas,
we omit their presentations.

Matrix representations play an important role in the theory of numbers
defined by the recurrence relations, see for example [4]. We give a matrix
generator also for Tribonacci quaternions TQn.
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Theorem 3. Let

(24) T =

 −TQ0 − TQ1 + TQ2 TQ1 − TQ0 TQ0

TQ0 TQ2 − TQ1 TQ1

TQ1 TQ0 + TQ1 TQ2


and

(25) A =

 0 1 0
0 0 1
1 1 1

 .
Then

(26) TAn =

 TQn−1 TQn−2 + TQn−1 TQn
TQn TQn−1 + TQn TQn+1

TQn+1 TQn + TQn+1 TQn+2

 for n ≥ 2.

Proof. (by induction on n) If n = 2 we have

A2 =

 0 0 1
1 1 1
1 2 2


and

TA2 =

 −TQ0 − TQ1 + TQ2 TQ1 − TQ0 TQ0

TQ0 TQ2 − TQ1 TQ1

TQ1 TQ0 + TQ1 TQ2

 ·
 0 0 1

1 1 1
1 2 2

 =

=

 TQ1 TQ0 + TQ1 TQ2

TQ2 TQ1 + TQ2 TQ0 + TQ1 + TQ2

TQ0 + TQ1 + TQ2 TQ0 + TQ1 + 2TQ2 TQ0 + 2TQ1 + 2TQ2

 =

=

 TQ1 TQ0 + TQ1 TQ2

TQ2 TQ1 + TQ2 TQ3

TQ3 TQ2 + TQ3 TQ4

 .
Assume that

TAn =

 TQn−1 TQn−2 + TQn−1 TQn
TQn TQn−1 + TQn TQn+1

TQn+1 TQn + TQn+1 TQn+2

 .
We shall show that

TAn+1 =

 TQn TQn−1 + TQn TQn+1

TQn+1 TQn + TQn+1 TQn+2

TQn+2 TQn+1 + TQn+2 TQn+3

 .
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Using induction’s hypothesis we have

TAn+1 = TAnA =

 TQn−1 TQn−2 + TQn−1 TQn
TQn TQn−1 + TQn TQn+1

TQn+1 TQn + TQn+1 TQn+2

·
 0 1 0

0 0 1
1 1 1

 =

=

 TQn TQn−1 + TQn TQn−2 + TQn−1 + TQn
TQn+1 TQn + TQn+1 TQn−1 + TQn + TQn+1

TQn+2 TQn+1 + TQn+2 TQn + TQn+1 + TQn+2

 =

=

 TQn TQn−1 + TQn TQn+1

TQn+1 TQn + TQn+1 TQn+2

TQn+2 TQn+1 + TQn+2 TQn+3

 ,
which ends the proof. �
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