PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multi-step matrix game of safe ship control at various safe passing distances

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper introduces the process of safe ship control in collision situations using a differential game model with m participants. The basic model of process includes non-linear state equations and non-linear, time-varying constraints of the state variables as well as the quality game control index in the forms of game integral payment and final payment. As an approximated model of the manoeuvring process, a model of a multi-step matrix game in the form of a dual linear programming problem has been adopted here. The Game Control (gc) computer program has been designed in Matlab/Simulink software in order to determine the own ship safe trajectory. The considerations have been illustrated with computer simulation examples using the gc program for determining safe own ship trajectory in real navigation situations when passing commonly-encountered ships.
Rocznik
Strony
141--146
Opis fizyczny
Bibliogr. 15 poz., rys.
Twórcy
autor
  • Gdynia Maritime University 83 Morska St., 81-225 Gdynia, Poland
Bibliografia
  • 1. Basar, T. & Olsder, G.J. (2013) Dynamic non-cooperative game theory. Philadelphia: SIAM.
  • 2. Bist, D.S. (2000) Safety and security at sea. Oxford-New Delhi: Butter Heinemann.
  • 3. Engwerda, J.C. (2005) LQ dynamic optimization and differential games. West Sussex: John Wiley & Sons.
  • 4. Isaacs, R. (1965) Differential games. New York: John Wiley & Sons.
  • 5. Kouemou, G. (2009) Radar technology. Chapter 4 by Józef Lisowski: Sensitivity of safe game ship control on base information from ARPA radar. Croatia: In-tech. pp. 61–86.
  • 6. Mesterton-Gibbson, M. (2001) An introduction to game theoretic modeling. Providence: American Mathematical Society.
  • 7. Millington, I. & Funge, J. (2009) Artificial intelligence for games. Amsterdam–Tokyo: Elsevier.
  • 8. Modarre, M. (2006) Risk analysis in engineering. Boca Raton: Taylor & Francis Group.
  • 9. Nisan, N., Roughgarden, T., Tardos, E. & Vazirani, V.V. (2007) Algorithmic game theory. New York: Cambridge University Press.
  • 10. Osborne, M.J. (2004) An introduction to game theory. New York: Oxford University Press.
  • 11. Perez, T. (2005) Ship motion control. London: Springer.
  • 12. Pietrzykowski, Z. (2004) Modelling of decision processes in sea-going ship movement control. Szczecin: Maritime University in Szczecin, No. 43 (in Polish).
  • 13. Straffin, P.D. (2001) Game theory and strategy. Warszawa: Scholar.
  • 14. Wells, D. (2013) Games and mathematics. Cambridge: Cambridge University Press.
  • 15. Zwierzewicz, Z. (2012) Methods and algorithms in ship controls systems engineering. Szczecin: Maritime University in Szczecin.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniajacą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-49c1680b-2c0f-4ae7-b634-ffaf85a3a4f4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.